13 research outputs found

    Late Pleistocene-Holocene radiolarian paleotemperatures in the Norwegian Sea based on Artificial Neural Networks 224 (2005) 311 332

    Get PDF
    Artificial Neural Networks (ANN) were trained by using an extensive radiolarian census dataset from the Nordic (Greenland, Norwegian, and Iceland) Seas. The regressions between observed and predicted Summer Sea Temperature (SST) indicate that lower error margins and better correlation coefficients are obtained for 100 m (SST100) compared to 10 m (SST10) water depth, and by using a subset of species instead of all species. The trained ANNs were subsequently applied to radiolarian data from two Norwegian Sea cores, HM 79-4 and MD95-2011, for reconstructions of SSTs through the last 15,000 years. The reconstructed SST is quite high during the Bolling-Allerod, when it reaches values only found later during the warmest phase of the Holocene. The climatic transitions in and out of the Younger Dryas are very rapid and involve a change in SST100 of 6.2 and 6.8 degrees C, taking place over 440 and 140 years, respectively. SST100 remains at a maximum during the early Holocene, and this Radiolarian Holocene Optimum Temperature Interval (RHOTI) predates the commonly recognized middle Holocene Climatic Optimum (HCO). During the 8.2 ka event, SST100 decreases by ca. 3 degrees C, and this episode marks the establishment of a cooling trend, roughly spanning the middle Holocene (until ca. 4.2 ka). Successively, since then and through the late Holocene, SST100 follows instead a statistically significant warming trend. The general patterns of the reconstructed SSTs agree quite well with previously obtained results based on application of Imbrie and Kipp Transfer Functions (IKTF) to the same two cores for SST0. A statistically significant cyclic component of our SST record (period of 278 years) has been recognized. This is close to the de Vries or Suess cycle, linked to solar variability, and documented in a variety of other high-resolution Holocene records

    Stratigraphy and major paleoenvironmental changes in the Sea of Okhotsk during the last million years inferred from radiolarian data

    No full text
    The radiolarian distribution is studied in Core IMAGES MD01-2415(46-m-long) from the central Sea of Okhotsk. The obtained data made it possible to refine the regional biostratigraphy and document the major paleoenvironmental changes in the basin in the last million years. In total, 17 radiolarian datum planes are defined with 12 of them being new. Their number exceeds that previously established for different fossil groups in the Subarctic Pacific for this period. Radiolarian datum planes are usually confined to the main boundaries and Quaternary climatic events. The analysis of the radiolaria distribution reveals several major paleoenvironmental shifts in the sea that occurred 950, 700, and 420-280 ka ago and are correlative with regional and global phases of the Middle Pleistocene climatic revolution

    Late Quaternary changes of the oxygen conditions in the bottom and intermediate waters on the western Kamchatka continental slope, the Sea of Okhotsk

    No full text
    Microfossil data on the foraminifers and radiolarians in the sediment core KOMEX LV28-44-3, the Kamchatka slope in the eastern Sea of Okhotsk, exhibit the changes in the water oxygen conditions during the last 146 ky. The paleoenvironmental proxies are the radiolarian species Cycladophora davisiana as indicator of the upper intermediate water ventilation, and the benthic/planktonic foraminifers as indicators of the bioproductivity and bottom water oxygenation. In case of sediment core LV28-44-3, the bottom water represents the lower intermediate one, so that conclusions on paleoenvironments are applicable for the most range of the local intermediate water. The well-oxygenated intermediate and near-bottom waters existed in the area of study during the penultimate glaciation of MIS 6, Early Weichselian initiation of the last glaciation within MIS 5b–d, and last glacial stages of MIS 3–2. The intervals of the short low-O2 bottom events with suboxic conditions (dissolved O2 in water 0.3–1.2 ml/l) occur during the last interglacial MIS 5e (Eemian stage) 125 to 113 ka, and during the last deglaciation 17.5 to 6.5 ka. Eemian low-O2 bottom events are associated with the high bioproductivity of the subsurface water but poor ventilation on the upper intermediate depths. The low-O2 bottom events during the last deglaciation occurred at the high bioproductivity of the subsurface water and active ventilation on the upper intermediate depths

    Paleoceanography of the Central Sea of Okhotsk during the Middle Pleistocene (350-190 ka) as inferred from micropaleontological data

    No full text
    The distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in the fraction >0.125 mm was analyzed in the core obtained from the central Sea of Okhotsk within the frameworks of the Russian-German KOMEX project. The core section characterizes the period 190–350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environments aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). The water exchange with the Pacific was maximal from 328 to 324 ka ago. Environments became moderate and close to the present-day ones at the end of the optimum exhibiting the possible existence of a dichothermal layer with substantial amounts of the surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, the “old” Pacific water determined near-bottom environments in the central Sea of Okhotsk during that period, although the influx of terrigenous material was higher, probably reflecting a more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). The paleoceanographic situation during interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220–210 ka, when the subsurface stratification increased and the dichothermal layer developed. Bottom environments during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: the actively formed “young” Okhotsk water displaced the “old” Pacific deep water
    corecore