26,633 research outputs found
Towards a practical approach for self-consistent large amplitude collective motion
We investigate the use of an operatorial basis in a self-consistent theory of
large amplitude collective motion. For the example of the
pairing-plus-quadrupole model, which has been studied previously at
equilibrium, we show that a small set of carefully chosen state-dependent basis
operators is sufficient to approximate the exact solution of the problem
accuratly. This approximation is used to study the interplay of quadrupole and
pairing degrees of freedom along the collective path for realistic examples of
nuclei. We show how this leads to a viable calculational scheme for studying
nuclear structure, and discuss the surprising role of pairing collapse.Comment: 19 pages, 8 figures Revised version To be published in Phys. Rev.
Angular Momentum Projected Configuration Interaction with Realistic Hamiltonians
The Projected Configuration Interaction (PCI) method starts from a collection
of mean-field wave functions, and builds up correlated wave functions of good
symmetry. It relies on the Generator Coordinator Method (GCM) techniques, but
it improves the past approaches by a very efficient method of selecting the
basis states. We use the same realistic Hamiltonians and model spaces as the
Configuration Interaction (CI) method, and compare the results with the full CI
calculations in the sd and pf shell. Examples of 24Mg, 28Si, 48Cr, 52Fe and
56Ni are discussed.Comment: 10 pages, 10 figures. Revised version. To be published in Physical
Review
A 3+1 Decomposition of the Minimal Standard-Model Extension Gravitational Sector
The 3+1 (ADM) formulation of General Relativity is used in, for example,
canonical quantum gravity and numerical relativity. Here we present a 3+1
decomposition of the minimal Standard-Model Extension gravity Lagrangian. By
choosing the leaves of foliation to lie along a timelike vector field we write
the theory in a form which will allow for comparison and matching to other
gravity models.Comment: Presented at the Eighth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, May 12-16, 201
Collective dipole excitations in sodium clusters
Some properties of small and medium sodium clusters are described within the
RPA approach using a projected spherical single particle basis. The oscillator
strengths calculated with a Schiff-like dipole transition operator and folded
with Lorentzian functions are used to calculate the photoabsorbtion cross
section spectra. The results are further employed to establish the dependence
of the plasmon frequency on the number of cluster components. Static electric
polarizabilities of the clusters excited in a RPA dipole state are also
calculated.
Comparison of our results with the corresponding experimental data show an
overall good agreement.Comment: 23 pages, 5 figure
Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei
The influence of the central depression in the density distribution of
spherical superheavy nuclei on the shell structure is studied within the
relativistic mean field theory. Large depression leads to the shell gaps at the
proton Z=120 and neutron N=172 numbers, while flatter density distribution
favors N=184 for neutrons and leads to the appearance of a Z=126 shell gap and
to the decrease of the size of the Z=120 shell gap. The correlations between
the magic shell gaps and the magnitude of central depression are discussed for
relativistic and non-relativistic mean field theories.Comment: 5 page
Chiral surfaces self-assembling in one-component systems with isotropic interactions
We show that chiral symmetry can be broken spontaneously in one-component
systems with isotropic interactions, i.e. many-particle systems having maximal
a priori symmetry. This is achieved by designing isotropic potentials that lead
to self-assembly of chiral surfaces. We demonstrate the principle on a simple
chiral lattice and on a more complex lattice with chiral super-cells. In
addition we show that the complex lattice has interesting melting behavior with
multiple morphologically distinct phases that we argue can be qualitatively
predicted from the design of the interaction.Comment: 4 pages, 4 figure
Description of superdeformed bands in light N=Z nuclei using the cranked HFB method
Superdeformed states in light nuclei are studied by means of the
self-consistent cranking calculation (i.e., the P + QQ model based on the
cranked Hartree-Fock-Bogoliubov method). Analyses are given for two typical
cases of superdeformed bands in the mass region, that is, bands
where backbending is absent (Ca) and present (Ar). Investigations
are carried out, particularly for the following points: cross-shell excitations
in the sd and pf shells; the role of the g and d orbitals; the
effect of the nuclear pairing; and the interplay between triaxiality and band
termination.Comment: 17 pages, 18 figures, accepted in Phys. Rev.
On Making Good Games - Using Player Virtue Ethics and Gameplay Design Patterns to Identify Generally Desirable Gameplay Features
This paper uses a framework of player virtues to perform a
theoretical exploration of what is required to make a game
good. The choice of player virtues is based upon the view
that games can be seen as implements, and that these are
good if they support an intended use, and the intended use
of games is to support people to be good players. A collection of gameplay design patterns, identified through
their relation to the virtues, is presented to provide specific starting points for considering design options for this type of good games. 24 patterns are identified supporting the virtues, including RISK/REWARD, DYNAMIC ALLIANCES, GAME MASTERS, and PLAYER DECIDED RESULTS, as are 7 countering three or more virtues, including ANALYSIS
PARALYSIS, EARLY ELIMINATION, and GRINDING. The paper concludes by identifying limitations of the approach as well as by showing how it can be applied using other views of what are preferable features in games
Temporally fluctuating prey and coexistence among unequal conspecific interferers
Coexistence among unequal conspecific interferers should be unlikely to persist if stronger interferers always experience a relative fitness increment from their higher foraging rates. In this study, we suggest that decreased relative costs to weaker interferers with increasing temporal fluctuations in prey availability may be a mechanism enhancing coexistence of unequal conspecific interferers. Previous work on fluctuation and coexistence has dealt with oscillations over a time-scale measured in generations of competitor species and their resources, while our work shows that fluctuations in prey availability facilitate coexistence of different phenotypic strategies within species and generations, and over short time-scales. With increasing amplitude of temporal fluctuation about an average prey density, cumulative intakes for differently strong interferers are affected differently. Because of the prey-dependent effect of interference, high amplitudes of fluctuation allow for relatively lower foraging-rate costs in weaker interferers, which decreases the difference in foraging success between strong and weaker interferers. This decreased difference in foraging success could thus significantly relax the conditions allowing for unequal interferer coexistence
- …