8,961 research outputs found

    Mass-metallicity relation from z=5 to the present: Evidence for a transition in the mode of galaxy growth at z=2.6 due to the end of sustained primordial gas infall

    Full text link
    We analyze the redshift evolution of the mass-metallicity relation in a sample of 110 Damped Lyα\alpha absorbers spanning the redshift range z=0.11−5.06z=0.11-5.06 and find that the zero-point of the correlation changes significantly with redshift. The evolution is such that the zero-point is constant at the early phases of galaxy growth (i.e. no evolution) but then features a sharp break at z=2.6±0.2z=2.6\pm 0.2 with a rapid incline towards lower redshifts such that damped absorbers of identical masses are more metal rich at later times than earlier. The slope of this mass metallicity correlation evolution is 0.35±0.070.35 \pm 0.07 dex per unit redshift. We compare this result to similar studies of the redshift evolution of emission selected galaxy samples and find a remarkable agreement with the slope of the evolution of galaxies of stellar mass log(M∗/M⊙)≈8.5(M_{*}/M_\odot) \approx 8.5. This allows us to form an observational tie between damped absorbers and galaxies seen in emission. We use results from simulations to infer the virial mass of the dark matter halo of a typical DLA galaxy and find a ratio (Mvir/M∗)≈30(M_{vir}/M_{*}) \approx 30. We compare our results to those of several other studies that have reported strong transition-like events at redshifts around z=2.5−2.6z=2.5-2.6 and argue that all those observations can be understood as the consequence of a transition from a situation where galaxies were fed more unprocessed infalling gas than they could easily consume to one where they suddenly become infall starved and turn to mainly processing, or re-processing, of previously acquired gas.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe

    Get PDF
    In this letter we will show that, contrary to what is widely believed, an almost isotropic cosmic microwave background (CMB) temperature does not imply that the universe is ``close to a Friedmann-Lemaitre universe''. There are two important manifestations of anisotropy in the geometry of the universe, (i) the anisotropy in the overall expansion, and (ii) the intrinsic anisotropy of the gravitational field, described by the Weyl curvature tensor, although the former usually receives more attention than the latter in the astrophysical literature. Here we consider a class of spatially homogeneous models for which the anisotropy of the CMB temperature is within the current observational limits but whose Weyl curvature is not negligible, i.e. these models are not close to isotropy even though the CMB temperature is almost isotropic.Comment: 5 pages (AASTeX, aaspp4.sty), submitted to Astrophysical Journal Letter

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure
    • 

    corecore