17,289 research outputs found

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure

    Uncertainty in geological and hydrogeological data

    Get PDF
    Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification

    A measurement of the differential cross section for the two-body photodisintegration of 3He at theta_LAB = 90deg using tagged photons in the energy range 14 -- 31 MeV

    Full text link
    The two-body photodisintegration of 3He has been investigated using tagged photons with energies from 14 -- 31 MeV at MAX-lab in Lund, Sweden. The two-body breakup channel was unambiguously identified by the (nonsimultaneous) detection of both protons and deuterons. This approach was made feasible by the over-determined kinematic situation afforded by the tagged-photon technique. Proton- and deuteron-energy spectra were measured using four silicon surface-barrier detector telescopes located at a laboratory angle of 90deg with respect to the incident photon-beam direction. Average statistical and systematic uncertainties of 5.7% and 6.6% in the differential cross section were obtained for 11 photon-energy bins with an average width of 1.2 MeV. The results are compared to previous experimental data measured at comparable photon energies as well as to the results of two recent Faddeev calculations which employ realistic potential models and take into account three-nucleon forces and final-state interactions. Both the accuracy and precision of the present data are improved over the previous measurements. The data are in good agreement with most of the previous results, and favor the inclusion of three-nucleon forces in the calculations.Comment: 12 pages, 13 figures; further Referee comments addresse

    The Dynamics, Prevalence and Impact of Nematode Infections in Organically Raised Sheep in Sweden

    Get PDF
    A three-year survey (1997–99) was carried out on organically reared sheep flocks throughout Sweden. The aim was to determine the prevalence and intensity of nematode infections and to establish relationships between sheep management practices and parasite infections. Faecal samples from ewes and lambs were collected from 152 organic flocks around lambing-time and during the grazing-period for analysis. Results were compared with the different management practices that farmers use to prevent parasitism in their flocks. A high proportion of the flocks was infected with nematodes. The most prevalent species were Haemonchus contortus, Teladorsagia circumeincta, Trichostrongylus axei, T. colubriformis and Chabertia ovina and infections progressively increased during summer in lambs grazing on permanent pastures. Severity of parasitic infection in lambs was highly dependent on egg output from the ewes. H. contortus was found in 37% of the flocks, even at latitudes approximating the Polar Circle. Nematodirus battus was recorded for the first time in Sweden during the course of this study. Lambs turned out onto permanent pasture showed higher nematode faecal egg counts (epg) than lambs that had grazed on pastures, which had not carried sheep the previous year. This beneficial effect of lambs grazing non-infected pastures persisted if the ewes were treated with an anthelmintic before turn-out and if the lambs were kept on pastures of low infectivity after weaning. In lambs, the prevalence and the magnitude of their egg counts were higher during autumn in flocks where lambs were slaughtered after 8 months of age, compared with flocks where all lambs were slaughtered before this age. These results will be used in providing advice to farmers of ways to modify their flock management in order to minimise the use of anthelmintics, but at the same time efficiently produce prime lambs

    Experimental f-value and isotopic structure for the Ni I line blended with [OI] at 6300A

    Full text link
    We have measured the oscillator strength of the Ni I line at 6300.34 \AA, which is known to be blended with the forbidden [O I] λ\lambda6300 line, used for determination of the oxygen abundance in cool stars. We give also wavelengths of the two isotopic line components of 58^{58}Ni and 60^{60}Ni derived from the asymmetric laboratory line profile. These two line components of Ni I have to be considered when calculating a line profile of the 6300 \AA\ feature observed in stellar and solar spectra. We also discuss the labelling of the energy levels involved in the Ni I line, as level mixing makes the theoretical predictions uncertain.Comment: Accepted for publication in ApJLetter

    A Study of Holographic Renormalization Group Flows in d=6 and d=3

    Get PDF
    We present an explicit study of the holographic renormalization group (RG) in six dimensions using minimal gauged supergravity. By perturbing the theory with the addition of a relevant operator of dimension four one flows to a non-supersymmetric conformal fixed point. There are also solutions describing non-conformal vacua of the same theory obtained by giving an expectation value to the operator. One such vacuum is supersymmetric and is obtained by using the true superpotential of the theory. We discuss the physical acceptability of these vacua by applying the criteria recently given by Gubser for the four dimensional case and find that those criteria give a clear physical picture in the six dimensional case as well. We use this example to comment on the role of the Hamilton-Jacobi equations in implementing the RG. We conclude with some remarks on AdS_4 and the status of three dimensional superconformal theories from squashed solutions of M-theory.Comment: 15 pages, 5 figures, V2: minor change

    Wave functions in the neighborhood of a toroidal surface; hard vs. soft constraint

    Full text link
    The curvature potential arising from confining a particle initially in three-dimensional space onto a curved surface is normally derived in the hard constraint q→0q \to 0 limit, with qq the degree of freedom normal to the surface. In this work the hard constraint is relaxed, and eigenvalues and wave functions are numerically determined for a particle confined to a thin layer in the neighborhood of a toroidal surface. The hard constraint and finite layer (or soft constraint) quantities are comparable, but both differ markedly from those of the corresponding two dimensional system, indicating that the curvature potential continues to influence the dynamics when the particle is confined to a finite layer. This effect is potentially of consequence to the modelling of curved nanostructures.Comment: 4 pages, no fig

    Algorithmic Debugging of Real-World Haskell Programs: Deriving Dependencies from the Cost Centre Stack

    Get PDF
    Existing algorithmic debuggers for Haskell require a transformation of all modules in a program, even libraries that the user does not want to debug and which may use language features not supported by the debugger. This is a pity, because a promising ap- proach to debugging is therefore not applicable to many real-world programs. We use the cost centre stack from the Glasgow Haskell Compiler profiling environment together with runtime value observations as provided by the Haskell Object Observation Debugger (HOOD) to collect enough information for algorithmic debugging. Program annotations are in suspected modules only. With this technique algorithmic debugging is applicable to a much larger set of Haskell programs. This demonstrates that for functional languages in general a simple stack trace extension is useful to support tasks such as profiling and debugging
    • …
    corecore