27 research outputs found
Innovative low temperature plasma approach for deposition of alumina films
Alumina films were deposited from a new plasma method using aluminum acetylacetonate (AAA) powder as precursor. The AAA was sputtered in argon and oxygen plasma mixtures. It was investigated the effect of the oxygen proportion (O2%) on the properties of the coatings. Deposition rate was derived from the layer height measured by profilometry. The elemental composition and molecular structure of the films were determined by Rutherford backscattering and infrared spectroscopies, respectively. Grazing incidence X-ray diffraction was used to investigate the microstructure of the films while hardness was determined by nanoindentation technique. Inspections on the surface morphology and on the film composition were conducted associating scanning electron microscopy and energy dispersive spectroscopy. Incorporation of oxygen affects the plasma kinetics and consequently the properties of the coatings. As moderated concentrations of oxygen ( 25%) are incorporated, the structure become rich in metallic aluminum with carbon rising at low proportions. The deposited layer is not homogeneous in thickness once the chemical composition of the precursor is changed by the action of the reactive oxygen plasma. Oxygen ablation on the film surface also contributes to the lack of homogeneity of the structure, especially as high oxygen proportions are imposed. Hardness data (0.5-2.0 GPa) corroborated the idea of an amorphous structure. Based on the results presented here it was possible to identify the oxygen concentration in the plasma atmosphere which mostly removed organics while preserving the stoichiometric alumina precipitation, subject of great relevance as one considers the reduction in the energy necessary for the creation of fully oxide coatings.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista Laboratório de Plasmas TecnológicosUniversidade Federal de São Paulo (UNIFESP) Departamento de Ciências Exatas e da TerraUniversidade de São Paulo Departamento de Física NuclearUniversidade de São Paulo Departamento de Física AplicadaUNIFESP, Depto. de Ciências Exatas e da TerraSciEL
Electrochemical characterization of samples of commercial steel treated with acetylene plasma
104-111Cutting tools have been employed in wood processing must be corrosion and wear resistant due to the acidic composition of wood and the wear generated during cutting, which lead to the deterioration of steel saws. Hydrogenated amorphous carbon films possess mechanical, tribological and barrier properties that can increase the hardness, wear and corrosion resistance of this type of tool. This work has involved an investigation of the effectiveness of plasma-deposited amorphous carbon thin films in protecting commercial carbon steel saws. Before deposition, the substrates were sputter-cleaned in argon plasma (19.27 Pa; 50 W) for 180 s. The films have been deposited using acetylene and argon mixtures excited by a radio frequency power supply (13.56 MHz, 70 W). The concentration of acetylene in the mixture has been varied in the inverse proportion to that of argon so as to maintain a constant total gas pressure of 1.8 Pa. The deposition time was 3600 s. The chemical behavior of the coated saws have been evaluated by electrochemical impedance spectroscopy (EIS) and polarization curves.Surface images of the plasma-coated samples have been recorded by scanning electron microscopy (SEM). The results have indicated that the plasma treatment has increased the corrosion resistance of carbon steel samples in acidic solutions
Electrochemical characterization of samples of commercial steel treated with acetylene plasma
Cutting tools have been employed in wood processing must be corrosion and wear resistant due to the acidic compositionof wood and the wear generated during cutting, which lead to the deterioration of steel saws. Hydrogenated amorphouscarbon films possess mechanical, tribological and barrier properties that can increase the hardness, wear and corrosionresistance of this type of tool. This work has involved an investigation of the effectiveness of plasma-deposited amorphouscarbon thin films in protecting commercial carbon steel saws. Before deposition, the substrates were sputter-cleaned inargon plasma (19.27 Pa; 50 W) for 180 s. The films have been deposited using acetylene and argon mixtures excited by aradio frequency power supply (13.56 MHz, 70 W). The concentration of acetylene in the mixture has been varied in theinverse proportion to that of argon so as to maintain a constant total gas pressure of 1.8 Pa. The deposition time was 3600 s.The chemical behavior of the coated saws have been evaluated by electrochemical impedance spectroscopy (EIS) andpolarization curves.Surface images of the plasma-coated samples have been recorded by scanning electron microscopy(SEM). The results have indicated that the plasma treatment has increased the corrosion resistance of carbon steel samples inacidic solutions
DNA for nano-bio scale computation of chemical formalisms using Higher Order Logic (HOL) and analysis using an interdisciplinary approach
Bio-molecular computing, 'computations performed by bio-molecules', is already challenging traditional approaches to computation both theoretically and technologically. Often placed within the wider context of ´bio-inspired' or 'natural' or even 'unconventional' computing, the study of natural and artificial molecular computations is adding to our understanding of biology, physical sciences and computer science well beyond the framework of existing design and implementation paradigms. In this introduction, We wish to outline the current scope of the field and assemble some basic arguments that, bio-molecular computation is of central importance to computer science, physical sciences and biology using HOL - Higher Order Logic. HOL is used as the computational tool in our R&D work. DNA was analyzed as a chemical computing engine, in our effort to develop novel formalisms to understand the molecular scale bio-chemical computing behavior using HOL. In our view, our focus is one of the pioneering efforts in this promising domain of nano-bio scale chemical information processing dynamics
Effect of ion irradiation on the structural properties and hardness of a-C:H:Si:O:F films
Amorphous carbon-based thin films, a-C:H:Si:O:F, were obtained by plasma immersion ion implantation and deposition (PIIID) from mixtures of hexamethyldisiloxane, sulfur hexafluoride and argon. For PIIID the sample holder was biased with negative 25 kV pulses at 60 Hz. The main system parameter was the proportion of SF6 in the reactor feed, R-SF. To allow comparison to growth without intentional ion implantation, some films were also grown by plasma enhanced chemical vapor deposition (PECVD). The objectives were to investigate the effects of fluorine incorporation and ion implantation on the film's chemical structure, and principally on the surface contact angle, hardness and friction coefficient. Infrared and X-ray photo-electron spectroscopic analyses revealed that the films are essentially amorphous and polymer-like, and that fluorine is incorporated for any non-zero value of R-SF. Choice of R-SF influences film composition and structure but ion implantation also plays a role. Depending on R-SF, hydrophilic or hydrophobic films may be produced. Ion implantation is beneficial while fluorine incorporation is detrimental to hardness. For ion implanted films the friction coefficient falls about one third as R-SF is increased from 0 to 60%. Films prepared by PIIID without fluorine incorporation present fairly low friction coefficients and hardnesses greater than those of conventional polymers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq