22 research outputs found

    Chitosan: Gels and Interfacial Properties

    No full text
    Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine) is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant

    Nanocomposites for Food Packaging Applications: An Overview

    Get PDF
    There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.publishedVersionpublishedVersio

    Characterization and Properties of Hydrogels Made from Neutral Soluble Chitosans

    No full text
    The current paper focuses on the preparation and some characteristics of viscoelastic hydrogels, ViscoGels™, made from chitosans having a random acylation pattern. Three different chitosan batches with a high fraction of acetylation were selected based on their Mw, and the impact of degree of cross-linking on these chitosan samples has been studied with respect to the properties of the final hydrogels. Rheological long term (12 month) stability and gelling kinetics data are presented together with results from swelling studies at different pH. Finally, an example illustrating these gels potential as drug delivery vehicles is presented and discussed

    Characterization and Properties of Hydrogels Made from Neutral Soluble Chitosans

    No full text
    The current paper focuses on the preparation and some characteristics of viscoelastic hydrogels, ViscoGels™, made from chitosans having a random acylation pattern. Three different chitosan batches with a high fraction of acetylation were selected based on their Mw, and the impact of degree of cross-linking on these chitosan samples has been studied with respect to the properties of the final hydrogels. Rheological long term (12 month) stability and gelling kinetics data are presented together with results from swelling studies at different pH. Finally, an example illustrating these gels potential as drug delivery vehicles is presented and discussed

    Nanocomposites for Food Packaging Applications: An Overview

    No full text
    There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed

    Effect of Liquid Absorbent Pads and Packaging Parameters on Drip Loss and Quality of Chicken Breast Fillets

    Get PDF
    Visible liquid inside food packages is perceived as unattractive to consumers, and may result in food waste—a significant factor that can compromise sustainability in food value chains. However, an absorber with overdimensioned capacity may cause alterations in texture and a dryer product, which in turn may affect consumers’ satisfaction and repurchase. In this study we compared the effect of a number of liquid absorbent pads in combination with headspace gas composition (60% CO2/40% N2 and 75% O2/25% CO2 ) and gas-to-product volume ratio (g/p) on drip loss and quality of fresh chicken breast fillets. A significant increase in drip loss with an increasing number of liquid absorbent pads was documented. The increase was more pronounced in 60% CO2/40% N2 compared to 75% O2/25% CO2 . By comparing packaging variants with a different number of liquid absorbent pads, a higher drip loss for all tested was found at g/p 1.8 compared to g/p 2.9. Total viable counts (TVC) were independent of whether there was free liquid in contact with the product, and TVC was independent of gas composition. Differentiation between the gas compositions was seen for specific bacterial analyses. While significant changes were observed using texture analysis, sensory evaluation of the chicken breast fillets did not show any negative effect in texture related attributes. This study demonstrates the importance of optimized control of meat drip loss, as product-adjusted liquid absorption may affect economy, food quality, and consumer satisfaction, as well as food wast

    Effect of Liquid Absorbent Pads and Packaging Parameters on Drip Loss and Quality of Chicken Breast Fillets

    Get PDF
    Visible liquid inside food packages is perceived as unattractive to consumers, and may result in food waste—a significant factor that can compromise sustainability in food value chains. However, an absorber with overdimensioned capacity may cause alterations in texture and a dryer product, which in turn may affect consumers’ satisfaction and repurchase. In this study we compared the effect of a number of liquid absorbent pads in combination with headspace gas composition (60% CO2/40% N2 and 75% O2/25% CO2 ) and gas-to-product volume ratio (g/p) on drip loss and quality of fresh chicken breast fillets. A significant increase in drip loss with an increasing number of liquid absorbent pads was documented. The increase was more pronounced in 60% CO2/40% N2 compared to 75% O2/25% CO2 . By comparing packaging variants with a different number of liquid absorbent pads, a higher drip loss for all tested was found at g/p 1.8 compared to g/p 2.9. Total viable counts (TVC) were independent of whether there was free liquid in contact with the product, and TVC was independent of gas composition. Differentiation between the gas compositions was seen for specific bacterial analyses. While significant changes were observed using texture analysis, sensory evaluation of the chicken breast fillets did not show any negative effect in texture related attributes. This study demonstrates the importance of optimized control of meat drip loss, as product-adjusted liquid absorption may affect economy, food quality, and consumer satisfaction, as well as food wast

    Chitosan: Gels and Interfacial Properties

    No full text
    Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine) is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant

    Current status of biobased and biodegradable foodpackaging materials: Impact on food quality and effect ofinnovative processing technologies

    Get PDF
    Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improvepublishedVersio

    Chitosan: Gels and interfacial properties

    No full text
    Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine) is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant
    corecore