2,526 research outputs found

    Integrating Imagery from Hull Mounted Sidescan Sonars with Multibeam Bathymetry

    Get PDF
    Multibeam echo sounders produce high quality bathymetric data, however, for acoustic imaging their alongtrack beamwidth is much wider than what is used on conventional sidescan sonars, so the imagery produced by sidescan sonars are of a better quality and are often preferred. A hullmounted combination instrument package that integrates both the accurate multibeam bathymetry and the high resolution sidescan imagery is an attractive and relatively low cost solution for detailed surveys of harbors, canals, rivers and other shallow areas. Especially in these shallow water areas the sidescan sonar benefits from being hull mounted rather than towed, since this arrangement is easier and safer to handle and the sensor position is known with high accuracy. The paper addresses how the backscatter from the hull-mounted sidescan sonar system can be radiometrically and geometrically corrected, by using the bathymetry from the multibeam echo sounder, and how the 2 data sets can be presented together in 2D and 3D. A practical experiment is described, whereby EM 3002D multibeam echo sounder and a hull mounted EA 400 sidescan sonar system are mounted together and deployed over the bow of a small survey launch. The co-registered data sets are analyzed using the UNH GEOCODER processing scheme, and the results are presented and interpreted in terms of capability to resolve small objects. A comparison is made between the EA 400 sidescan backscatter and the EM 3002D seabed imagery

    Reference installation for the German grid initiative D-Grid

    Get PDF
    The D-Grid reference installation is a test platform for the German grid initiative. The main task is to create the grid prototype for software and hardware components needed in the D-Grid community. For each grid-related task field different alternative middleware is included. With respect to changing demands from the community, new versions of the reference installation are released every six months

    Gyroscopic motion of superfluid trapped atomic condensates

    Full text link
    The gyroscopic motion of a trapped Bose gas containing a vortex is studied. We model the system as a classical top, as a superposition of coherent hydrodynamic states, by solution of the Bogoliubov equations, and by integration of the time-dependent Gross-Pitaevskii equation. The frequency spectrum of Bogoliubov excitations, including quantum frequency shifts, is calculated and the quantal precession frequency is found to be consistent with experimental results, though a small discrepancy exists. The superfluid precession is found to be well described by the classical and hydrodynamic models. However the frequency shifts and helical oscillations associated with vortex bending and twisting require a quantal treatment. In gyroscopic precession, the vortex excitation modes m=±1m=\pm 1 are the dominant features giving a vortex kink or bend, while the m=+2m=+2 is found to be the dominant Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl

    Immune gene profiles in Atlantic salmon (salmo salar L.) post-smolts infected with SAV3 by bath-challenge show a delayed response and lower levels of gene transcription compared to injected fish

    Get PDF
    Acknowledgements This research was funded by the Research Council of Norway, Research grant # 224885/E40. The following people are thanked for their expert technical assistance and help during sampling; Ann Catherine Bårdsgjære Einen, Stig Mæhle, Ingrid Fiksdal and Miriam Castillo Furné. Thanks also to Ivar Helge Matre at Matre Research Station, IMR for the production of fish and Joachim Nordbø for fish husbandry and help with sampling. Øystein Evensen, Norwegian University of Life Sciences, is acknowledged for providing the SAV3 isolate.Peer reviewedPostprin

    Atlantic salmon adapted to seawater for 9 weeks develop a robust immune response to salmonid alphavirus upon bath challenge

    Get PDF
    This research was funded by the Research Council of Norway. Research grant # 224885/E40. The following people are thanked for their expert technical assistance and help during sampling and analysis; Ann Catherine Einen Bårdsgjære, Stig Mæhle, Ingrid Fiksdal and Miriam Castillo Furné. Thanks also to Ivar Helge Matre (Matre Research Station, Institute for Marine Research) for production of fish and Joachim Nordbø for fish husbandry and help with sampling. Kai Ove Skaftnesmoe is thanked for the preparation of Fig. 6. Øystein Evensen, Norwegian University of Life Sciences, is acknowledged for providing the SAV3 isolate.Peer reviewedPostprin

    Can screening and brief intervention lead to population-level reductions in alcohol-related harm?

    Get PDF
    A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm

    Collective excitations of trapped Bose condensates in the energy and time domains

    Full text link
    A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-deGennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, is extremely efficient in our implementation with parallel FFT methods, and produces highly accurate results. The method is suitable for general trap geometries, condensate flows and condensates permeated with vortex structures.Comment: 6 pages, 3 figures small typos fixe

    High-field Phase Diagram and Spin Structure of Volborthite Cu3V2O7(OH)2/2H2O

    Full text link
    We report results of 51V NMR experiments on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice. Following the previous experiments in magnetic fields BB below 12 T, the NMR measurements have been extended to higher fields up to 31 T. In addition to the two already known ordered phases (phases I and II), we found a new high-field phase (phase III) above 25 T, at which a second magnetization step has been observed. The transition from the paramagnetic phase to the antiferromagnetic phase III occurs at 26 K, which is much higher than the transition temperatures from the paramagnetic to the lower field phases I (B < 4.5 T) and II (4.5 < B < 25 T). At low temperatures, two types of the V sites are observed with different relaxation rates and line shapes in phase III as well as in phase II. Our results indicate that both phases II and III exhibit a heterogeneous spin state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order. The magnetization of the latter system exhibits a sudden increase upon entering into phase III, resulting in the second magnetization step at 26 T.We discuss the possible spin structure in phase III.Comment: 9 pages, 12 figure
    corecore