12 research outputs found

    Neuroanatomical Domain of the Foundational Model of Anatomy Ontology

    Get PDF
    Background: The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. Description: The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. Conclusions: A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain. We highlighted several use cases of these extensions, including ontology reuse, neuroimaging data annotation, and organizing 3D brain models

    Autonomic and muscular responses and recovery to one-hour laboratory mental stress in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress is a risk factor for musculoskeletal pain. We wanted to explore stress related physiology in healthy subjects in order to gain insight into mechanisms of pain development which may relate to the pathophysiology of musculoskeletal pain disorders.</p> <p>Methods</p> <p>Continuous blood pressure, heart rate, finger skin blood flow, respiration, surface electromyography together with perception of pain, fatigue and tension were recorded on 35 healthy women and 9 healthy men before, during a 60 minute period with task-related low-grade mental stress, and in the following 30 minute rest period.</p> <p>Results</p> <p>Subjects responded physiologically to the stressful task with an increase in trapezius and frontalis muscle activity, increased blood pressure, respiration frequency and heart rate together with reduced finger skin blood flow. The blood pressure response and the finger skin blood flow response did not recover to baseline values during the 30-minute rest period, whereas respiration frequency, heart rate, and surface electromyography of the trapezius and frontalis muscles recovered to baseline within 10 minutes after the stressful task. Sixty-eight percent responded subjectively with pain development and 64% reported at least 30% increase in pain. Reduced recovery of the blood pressure was weakly correlated to fatigue development during stress, but was not correlated to pain or tension.</p> <p>Conclusion</p> <p>Based on a lack of recovery of the blood pressure and the acral finger skin blood flow response to mental stress we conclude that these responses are more protracted than other physiological stress responses.</p

    Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work.</p> <p>Methods</p> <p>We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation.</p> <p>Results</p> <p>Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery.</p> <p>Conclusion</p> <p>It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition.</p

    Quantitative EEG findings in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with brief depressive episodes and concurrent rapidly fluctuating psychiatric symptoms do not fit current diagnostic criteria and they can be difficult to diagnose and treat in an acute psychiatric setting. We wanted to study whether these patients had signs of more epileptic or organic brain dysfunction than patients with depression without additional symptomatology.</p> <p>Methods</p> <p>Sixteen acutely admitted patients diagnosed with a brief depressive episode as well as another concurrent psychiatric diagnosis were included. Sixteen patients with major depression served as controls. Three electroencephalographic studies (EEG) were visually interpreted and the background activity was also analysed with quantitative electroencephalography (QEEG).</p> <p>Results</p> <p>The group with brief depression and concurrent symptoms had multiple abnormal features in their standard EEG compared to patients with major depression, but they did not show significantly more epileptiform activity. They also had significantly higher temporal QEEG delta amplitude and interhemispheric temporal delta asymmetry.</p> <p>Conclusion</p> <p>Organic brain dysfunction may be involved in the pathogenesis of patients with brief depressive episodes mixed with rapidly fluctuating psychiatric symptoms. This subgroup of depressed patients should be investigated further in order to clarify the pathophysiology and to establish the optimal evaluation scheme and treatment in an acute psychiatric setting.</p

    Multi-lifespan Information System Design in the Aftermath of Genocide: An Early-Stage Report from Rwanda

    No full text
    In this paper we report on our research and design efforts to provide Rwandans with access to and reuse of video interviews from the International Criminal Tribunal for Rwanda. More generally, we investigate methods and designs that can be deployed successfully within a post-conflict political climate concerned about recurring violence. We describe our general approach and report three case studies with diverse sectors of Rwandan society: governmental information centres, youth clubs, and a grassroots organization working with victims of sexual violence. We use five indicators to assess the success and limitations of our approach: diverse stakeholders; diverse uses; on-going use; cultural, linguistic and geographic reach; and Rwandan initiative. This work makes three important contributions: first, it directly supports the Rwandan people in their efforts to achieve justice, healing and reconciliation; second, it provides the HCI community with methods and approaches for undertaking information and interaction design in post-conflict situations; third, it describes the first empirical exploration of multi-lifespan information system design.We thank the many Rwandan people and organizations who worked with us including Never Again Rwanda, Hope After Rape, and the ICTR Documentation and Information Centres. This work is dedicated to them and their efforts on behalf of peace, justice, and reconciliation. This material is based, in part, upon work supported by the National Science Foundation under Grant No. 0325035, UW Foundation, and generous gifts to the Tribunal Voices project. Any opinions, findings, and conclusions or recommendation expressed in this material are those of the authors and do not necessarily reflect the views of our donors

    JOURNAL OF BIOMEDICAL SEMANTICS DATABASE Open Access

    No full text
    Background: The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. Description: The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. Conclusions: A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain. We highlighted several use cases of these extensions, including ontology reuse, neuroimaging data annotation, and organizing 3D brain models

    Systemic Inflammation in Preclinical Ulcerative Colitis

    No full text
    Background &amp; Aims: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins. Methods: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n = 72) and matched healthy controls (n = 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n = 101) and healthy controls (n = 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n = 41) and matched healthy controls (n = 37) were explored. Results: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P &lt; .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1β, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-κB, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve = 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP-1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis. Conclusions: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors
    corecore