13 research outputs found

    Genetic Variation at 9 Autosomal Microsatellite Loci in Asian and Pacific Populations

    No full text
    Genetic variation at 9 autosomal microsatellite loci (CFS1R, TH01, PLA2A, F13A1, CYP19, LPL, D20S481, D20S473, and D20S604) has been characterized in 16 Asian and Oceanic populations, mostly from mainland and insular Southeast Asia. The neighbor-joining tree and the principal coordinates analysis of the genetic relationships of these populations show a clear separation of Papua New Guinea Highlanders and, to a lesser extent, Malayan aborigines (Orang Asli or Semai) from the rest of the populations. Although the number of markers used in this study appears to be inadequate for clarifying the patterns of genetic relationships among the studied populations, in the principal coordinates analysis a geographic trend is observed in the mainland and insular Southeast Asian populations. Furthermore, in an attempt to contrast the extent of variation between autosomal and Y-chromosome-specific microsatellite loci and to reveal potential differences in the patterns of male and female migrations, we have also compared genetic variation at these 9 autosomal loci with variation observed at 5 Y-chromosome-specific microsatellites in a common set of 14 Asian populations

    Alu Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa

    Get PDF
    Alu insertion polymorphisms (polymorphisms consisting of the presence/absence of an Alu element at a particular chromosomal location) offer several advantages over other nuclear DNA polymorphisms for human evolution studies. First, they are typed by rapid, simple, PCR-based assays; second, they are stable polymorphisms—newly inserted Alu elements rarely undergo deletion; third, the presence of an Alu element represents identity by descent—the probability that different Alu elements would independently insert into the exact same chromosomal location is negligible; and fourth, the ancestral state is known with certainty to be the absence of an Alu element. We report here a study of 8 loci in 1500 individuals from 34 worldwide populations. African populations exhibit the most between-population differentiation, and the population tree is rooted in Africa; moreover, the estimated effective time of separation of African versus non-African populations is 137,000 ± 15,000 years ago, in accordance with other genetic data. However, a principal coordinates analysis indicates that populations from Sahul (Australia and New Guinea) are nearly as close to the hypothetical ancestor as are African populations, suggesting that there was an early expansion of tropical populations of our species. An analysis of heterozygosity versus genetic distance suggests that African populations have had a larger effective population size than non-African populations. Overall, these results support the African origin of modern humans in that an earlier expansion of the ancestors of African populations is indicated
    corecore