714 research outputs found
The Alteration History of Clovis Class Rocks in Gusev Crater as Determined by Ti-Normalzed Mass Balance Analysis
The West Spur Clovis class rocks in Gusev Crater are some of the most altered rocks in Gusev Crater and likely contain a mixed sulfate and phyllosilicate mineralogy [1,2]. The high S and Cl content of the Clovis rocks suggests that acidic vapors or fluids of H2SO4 and HCl reacted with the Clovis parent rock to form Ca, Mg,- sulfates, iron-oxyhydroxides and secondary aluminosilicates (approx.60 wt.%) of a poorly crystalline nature (e.g., allophane) [1]. Up to 14-17 wt.% phyllosilicates (e.g., kaolinite, chlorite, serpentine) are hypothesized to exist in the Clovis materials suggesting that Clovis parent materials while possibly exposed to acidic pHs were likely neutralized by basalt dissolution which resulted in mildly acidic pHs (4-6) [1, 2]. This work proposes that subsequent to the alteration of the Clovis rocks, alteration fluids became concentrated in ions resulting in the addition of silicate and salts. The objective of this work is to utilize Ti-normalized mass balance analysis to evaluate (1) mineral gains and losses and (2) elemental gains and losses in the Clovis rocks. Results of this work will be used evaluate the nature of geochemical conditions that affect phyllosilicate and sulfate formation at Gusev crater
The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars
The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3.9. Fe hydrolysis reactions on Mars is another source of protons that would have contributed to acidity. The presence of SO2 from volcanic processes could also have contributed to geochemical acidification. These sources of acidity competed with base-forming cations that resulted in mildly acidic solutions that were not favorable for carbonate formation but may have allowed for Fe/Mg smectite formation. Noachian to early Hesperian Mars could have been mildly acidic, allowing Fe/Mg smectite formation but preventing widespread carbonate deposition. This paradigm shift from an early Mars that was neutral-alkaline to mildly acidic may possibly explain why there is a disparity between the occurrence of carbonate and Fe/Mg smectites. Potential microbiological activity would not be eliminated under a mildly acidic Mars; however, there could be tighter constraints as to the type and species of microbiology that could exist
(Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations
Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate
Evidence for Calcium Carbonate at the Phoenix Landing Site
The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars
Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer
The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil
The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices
This paper contributes to the general consideration of whether a policy of incentivising improved forecasts for renewable energy outputs, and making them more available in the daily electricity market, would be beneficial. Using data from the German electricity market, we investigate the effect of wind and solar energy forecasts errors on imbalance volumes and intraday spot electricity prices. We use ordinary least square regression, quantile regression and autoregressive moving averages to identify these relationships using variables that have a quarter-hourly data granularity. The results show a positive relationship between wind forecast errors and imbalance volumes. We find that wind forecast errors impact spot prices more than solar forecasting errors. Policy incentives to improve the accuracy and availability of renewable energy forecasts should therefore be encouraged
A Possible Organic Contribution to the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data
Two of the most important discoveries of the Phoenix Mars Lander were the discovery of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in the soils at the landing site in the martian northern plains. The Thermal and Evolved Gas Analyzer (TEGA) instrument was one of the tools that made this discovery. After soil samples were delivered to TEGA and transferred into small ovens, the samples could be heated up to approx.1000 C and the gases that evolved during heating were monitored by a mass spectrometer. A CO2 signal was detected at high temperature (approx.750 C) that has been attributed to calcium carbonate decomposition. In addition to this CO2 release, a lower temperature signal was seen. This lower temperature CO2 release was postulated to be one of three things: 1) desorption of CO2, 2) decomposition of a different carbonate mineral, or 3) CO2 released due to organic combustion. Cannon et al. [3] present another novel hypothesis involving the interaction of decomposition products of a perchlorate salt and calcium carbonate
Effect of Sulfur Concentration and PH Conditions on Akaganeite Formation: Understanding Akaganeite Formation Conditions in Yellowknife Bay, Gale Crater, Mars
The Chemistry and Mineralogy Instrument (CHEMIN) on board the Mars Science Laboratory (MSL) Curiosity Rover identified minor amounts of akaganeite (beta-FeOOH) at Yellowknife Bay, Mars. There is also evidence for akaganeite at other localities on Mars from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Akaganeite is an iron(III) hydroxide with a hollandite- like structure and Cl in its tunnels. Terrestrial akaganeite usually forms in Cl-rich environments under acidic, oxidizing conditions. Previous studies of akaganeite have revealed that akaganeite formation is affected by the presence of sulfate (hereafter denoted as S. The prediction of circumneutral pH coupled with the detection of S at Yellowknife Bay dictate that work is needed to determine how S and pH together affect akaganeite formation. The goal of this work is to study how changes in both S concentration and pH influence akaganeite precipitation. Akaganeite formation was investigated at S/Cl molar ratios of 0, 0.017, 0.083, 0.17 and 0.33 at pH 1.5, 2, and 4. Results are anticipated to provide combined S concentration and pH constraints on akaganeite formation in Yellowknife Bay and elsewhere on Mars. Knowledge of solution pH and S concentrations can be utilized in understanding microbial habitability potential on the Martian surface
Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions
Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size
- …