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Abstract: This paper contributes to the general consideration of whether a policy of 

incentivising improved forecasts for renewable energy outputs, and making them more available 

in the daily electricity market, would be beneficial.  Using data from the German electricity 

market, we investigate the effect of wind and solar energy forecasts errors on imbalance volumes 

and intraday spot electricity prices.  We use ordinary least square regression, quantile regression 

and autoregressive moving averages to identify these relationships using variables that have a 

quarter-hourly data granularity. The results show a positive relationship between wind forecast 

errors and imbalance volumes. We find that wind forecast errors impact spot prices more than 

solar forecasting errors. Policy incentives to improve the accuracy and availability of renewable 

energy forecasts should therefore be encouraged. 

Keywords: electricity imbalance; electricity spot prices; renewable energy; forecast errors 

 'Declarations of interest: none'. 

1.! Introduction 

Since the emergence of liberalised electricity markets in the 1990s, policy interventions have 

regularly been sought to improve the efficiencies of market processes, for example to reduce 

transaction costs, encourage new entry and reduce consumer prices.  From this perspective, there 

has been an increasing amount of attention on the intra-day and real-time ("balancing") markets, 

motivated in part by the influx of renewable generation and consumer engagement. When 

generators or retailers produce or consume differently in real-time compared to their advance 

notifications to the system operator, and compared to their forward contract positions, they will 
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generally be exposed to "imbalance" and "settlement" charges. With greater intra-day 

uncertainties, these costs have been rising for the market participants, creating financial distress 

(leading to market exits for new entrant retailers who fail to hedge effectively, e.g. Pigden, 

2018), and the operational complexity has been adding to the costs of system operators.  

As a consequence, in the EU, for example, new network code regulations for electricity 

balancing (Entso-e, 2017) have sought to harmonise and open-up the intraday and real time 

markets to greater competition, whilst the REMIT (Acer, 2014) legislations have required 

member states to move towards greater transparency in their wholesale markets. But, intra-day 

uncertainties continue to impose high risk management costs to the market participants (hedging 

and imbalance charges) as well as high transaction costs (collateral against settlement charges), 

and higher system operations costs incurred by the system operators. In GB, the energy regulator 

has recognised this issue somewhat and has directly incentivised the system operator to develop 

and publish more accurate demand forecasts to improve operations (Ofgem, 2018). The system 

operator is directly penalised or rewarded for the accuracy of its demand forecasts against targets 

within its regulatory framework. 

In this research, we look more generally at this theme and estimate to what extent forecast errors 

on renewable energy production contribute to intra-day price increases and system imbalances. 

This analysis is therefore quite distinct from the many studies that have sought to model daily 

prices in terms of market fundaments, such as actual demand levels and supply costs. We do not 

therefore seek to develop comprehensive explanatory or forecasting models, but look specifically 

at the impact of market uncertainty and the role of forecast errors in price formation. The policy 

implication of this motivation may be that incentives to improve and provide better forecasts to 

the market would be beneficial. 

The structure of the paper is as follows.  Section 2 provides a background to the focus upon 

Germany and reviews the relevant research. Section 3 discusses the data and explanatory 

variables of this study leading to the empirical analysis. Section 4 discusses the results. We 

conclude the paper presenting salient findings and discussion in Section 5.  
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2.! Background 

2.1 The German electricity market 

We focus upon Germany since it is the largest electricity market within the European Union and 

has been at the forefront of the energy transition into renewables.  Consumption was 595 Terra 

Watt hours (TWh) for the 2017 calendar year (Clean Energy Wire, 2018). Renewable energy 

sources (RES) have become fundamental to the German electricity market and their stochastic 

effects drive intraday trading (Cludius et al., 2014; Kiesel and Paraschiv, 2017). Cludius et al., 

(2014) report that renewable energy reduced prices through the merit-order effect (reduction in 

average price per unit of electricity due to rise in renewable energy supply introducing lower low 

marginal costs) by 6 Euros per Mega Watt hours (€/MWh) in 2010. Their calculations go on to 

show this reduction was 10 €/MWh in 2012 and 14 to 16 €/MWh in 2016. The trend in price 

reduction is evidently following the trend in renewable energy penetration. 

The Energy Industry Act passed in 1998 fully liberalized the German energy market and the 

number of market participants active in the German electricity market now exceeds one thousand 

(German Trade & Invest, 2018). The system is run by four transmission systems operators. 

These TSOs are tasked with managing the supply to meet demand. In the event of surplus or 

shortage, they are expected to instantaneously balance the demand and supply using the capacity 

reserve (Graeber, 2014).  Over 25% of the current energy mix of Germany is powered through 

renewable sources (see Table 1) (AG Energiebilanzen e.V., 2017). There is evidence of wind and 

PV energy satisfying up to 80% of Germany’s energy demand on certain peak hours in 2014 

(Martinot, 2015).  

The European Energy Exchange AG (EEX) is the leading energy exchange in Central Europe. Its 

merger with Powernext SA of France in 2008 led to the formation of the European Power 

Exchange (EPEX SPOT). EPEX SPOT is 51% owned by EEX (both directly and indirectly) and 

the rest by the TSOs. EPEX SPOT deals with trading in Germany, France, the United Kingdom 

(UK), the Netherlands, Belgium, Austria, Switzerland and Luxembourg and represents on 

average 50% of the market share across these countries. Day-ahead trading refers to the midday 

auctions to clear a supply-demand equilibrium a day-ahead of the actual delivery. The intraday 

market starts operations at 3pm each day and trades up to 30 minutes prior to the start of the 
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traded 15 minute period (EEX AG, 2018; EPEX SPOT, 2018; Kiesel and Paraschiv, 2017). The 

day-ahead market allows participants to access the market, while the intraday trading allows 

them to adjust to the evolving demand and supply levels (Kiesel and Paraschiv, 2017). 

Table 1: Germany's energy mix by source (%) (AG Energiebilanzen e.V., 2017) 
 

Energy Source 2010 2011 2012 2013 2014 

Coal 41.6 42.9 44.1 45.2 43.8 

Nuclear 22.2 17.6 15.8 15.3 15.5 

Natural gas 14.1 14.1 12.2 10.6 9.7 

Oil 1.4 1.2 1.2 1.1 0.9 

Renewable sources 16.5 20.1 22.6 23.7 25.8 

Wind (onshore) 6.0 8.0 8.1 8.0 8.9 

Wind (offshore)    0.1 0.2 

Hydro power 3.3 2.9 3.5 3.6 3.1 

Biomass 4.6 5.2 6.1 6.3 6.7 

Photovoltaic (Solar) 1.9 3.2 4.2 4.9 5.7 

Waste 0.7 0.8 0.8 0.8 1.0 

Other sources 4.2 4.1 4.1 4.1 4.3 

The intraday volume has grown in the last decade. This is mainly due to the wind production 

forecast errors, which leads market participants to trade close to delivery time to mitigate the ex 

costs that they may face by being out of balance (Aïd et al., 2016). EPEX SPOT began trading 

intraday quarter hourly (15 minute) contracts in the German energy market in December 2014 

(EEX AG, 2018; EPEX SPOT, 2018). According to German law, renewable energy needs 

initially to be traded day-ahead of actual consumption. Typically, the TSOs oversee this 

guaranteeing the supplier a feed-in-tariff. The production forecast for renewable energy has a 

horizon of up to 36 hours before delivery (Graeber and Kleine, 2013; Just and Weber, 2015). 

Evidently, forecasts are not without errors. Hence, the market allows the stakeholders to use the 

intraday market to balance the emerging differences between the forecast and the actual 

production. Studies on the mechanisms and the strategies for energy balancing have been 

conducted by Karakatsani and Bunn, (2008b), Möller, Rachev and Fabozzi, (2011) and Klæboe, 

Eriksrud and Fleten, (2013). 
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The cost of balancing demand with supply is becoming increasingly important as wind and PV 

reaches high penetration rates (Baker et al., 2013), becoming a key concern for transmission 

system operators (TSO) and regulators (Hu et al., 2015; Kök et al., 2016; Wu and Kapuscinski, 

2013). Gross et al. (2006) suggest this cost is generally very low at low penetration levels but the 

extra cost of managing intermittency is nonlinear and depends on different factors such as 

location of electricity resources, and how the local electricity demand patterns match with 

variability of electricity production from renewable sources (Ritchie, 2017). 

The liquidity for intraday trading has been increasing in Germany, but nevertheless balancing the 

system remains a challenge (Bueno-Lorenzo et al., 2013; Skajaa et al., 2015; Weber, 2010). This 

becomes an issue when the generating fleet is insufficiently flexible because of longer ramping 

constraints and slow start times (e.g. with some thermal power plants). A consequence is the 

appearance of negative electricity wholesale prices during instances with excess supply (Kiesel 

and Paraschiv, 2017). This is typical of a combination between low electricity demand and high 

output from renewable sources displacing conventional capacity. Figure 1 and Figure 2 show the 

electricity imbalance and the German EPEX SPOT price on an arbitrary day to illustrate this 

phenomenon. The figure shows that the EPEX SPOT reaches negative prices multiple times. 

Frictions in the market and the extent of the penetration of intermittent energy sources cause this 

and lead to volatility clustering (Mandelbrot, 1997). Figure 3 indicates wind and photovoltaic 

electricity forecast errors for the corresponding day.  

 
Figure 1: imbalance on a randomly selected day in 2014 
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Figure 2: EPEX spot price on a randomly selected day in 2014 

 
Figure 3: PV/wind production forecast error for a randomly selected day in 2014 

Since the renewable energy suppliers are subsidized by the German Federal government, 

inefficiencies in balancing supply-demand are welfare costs to the consumer (Cludius et al., 

2014). Understanding the role of forecast errors is therefore crucial not only for operational 

insights into the price formation, but also in indicating the potential benefits of improved 

forecasting services to the industry.  

2.2 Background  

Forecasting studies on electricity demand have a long history of methodological development. 

Taylor, (2003), Fan and Hyndman, (2012) and Quan, Srinivasan and Khosravi, (2014) have all 

modelled short-term electricity demand forecasts. But with market competition, load is no longer 
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the only variable that needs to be predicted and there is an increasing attention from researchers 

on electricity price modeling and forecasting (Garcia and Kirschen, 2004, Weron, 2014). 

Escribano, Ignacio Peña and Villaplana (2011) after adjusting for seasonality for daily 

equilibrium spot prices of eight electricity markets, examine the development of electricity prices 

in deregulated markets. They identify that equilibrium prices are mean-reverting, with volatility 

clustering and with jumps of time-dependent intensity. While Higgs, (2009) considers a 

generalized autoregressive conditional heteroskedasticity (GARCH) process to study electricity 

prices, Conejo et al. (2005) present a review of the time series analysis, neural networks and 

wavelet methods to predict the day-ahead market price. Nowotarski et al. (2014), provide more 

accurate forecasts by studying the use of forecast averaging in the context of day-ahead market 

electricity price. 

Several researchers in the last decade analyzed the effects of incorporating wind energy in day-

ahead and intraday markets on the price fluctuations (Barth et al., 2008; Swinand and 

O’Mahoney, 2015; Weber, 2010). Considering the production variability of both wind and PV, 

Hirth, (2015) studied the optimal share of these two technologies. Jónsson, Pinson and Madsen 

(2010) show the non-linear impact of wind energy forecasts on both day-ahead spot prices and 

their distributional characteristics.  

There have been numerous prior works focusing on day-ahead electricity price forecasts  (Clò et 

al., 2015; Jónsson et al., 2010; Karakatsani and Bunn, 2008b; Klæboe et al., 2013; Möller et al., 

2011; Pape et al., 2016; Paraschiv et al., 2014). However, the emphasis on intraday market prices 

has been relatively scant. Weber (2010) provides an insightful study on how to absorb large 

amounts of wind energy to the intraday market. This study reviews market designs of France, 

Germany, Scandinavia and the UK. Most of the published research is on wind energy (Bueno-

Lorenzo et al., 2013; Skajaa et al., 2015; Usaola and Moreno, 2009; Weber, 2010).  

Whilst the literature has been ripe with works focusing on electricity spot prices, focus on 

electricity real-time imbalances has been relatively scant. Barth et al. (2008) emphasize the 

importance of regulating power costs considering actual scarcity with an eye on overall system 

imbalance. Aïd, Gruet and Pham, (2016) develop a theoretical model to minimize the imbalance 

from residuals in electricity demand. They primarily focus on thermal power generation to 
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mitigate fluctuations in wind energy generations in their study. One study investigates the 

relationship between wind energy and supply-demand imbalance in the Spanish energy market 

(Bueno-Lorenzo et al., 2013). The paper however, focuses more on defining a new pricing 

scheme to design a more efficient electricity market. 

From a methodological standpoint, regression has been widely used in forecasting intraday 

electricity prices. Autoregression has been used frequently to forecast intraday electricity prices 

(Panagiotelis and Smith, 2008; Pape et al., 2016; Ziel, 2016). Hagfors et al. (2016) use quantile 

regression in their study while Kiesel and Paraschiv, (2017) opt for reduced-form econometric 

analysis. Usaola and Moreno, (2009) and Bueno-Lorenzo, Moreno and Usaola, (2013) focus on 

revenue maximization by predicting wind energy inputs. Both these works focus extensively on 

imbalance and mitigating ancillary energy supply. Bueno-Lorenzo, Moreno and Usaola, (2013) 

introduce an optimal bidding strategy after analyzing data for 8 months.  Skajaa, Edlund and 

Morales, (2015) develop algorithms in their study. Aïd, Gruet and Pham, (2016) approach their 

research using a linear quadratic control problem. 

The geographic focus of these preceding works is spread narrowly. The Spanish (Bueno-Lorenzo 

et al., 2013; Usaola and Moreno, 2009) and the Danish electricity markets (Skajaa et al., 2015) 

have attracted considerable academic attention, although solely from the wind energy 

perspective. Elsewhere, Lisi and Edoli (2018) show that the sign of the zonal imbalance market 

markets is predictable, validated through out of sample backtesting, and based upon lagged 

imbalances and loads.  Hagfors et al. (2016) focuses on electricity price forecasts for the UK. 

However, their study is not dedicated solely on intraday price forecasting or RES. Germany’s 

intraday market has been subjected to numerous academic studies (Kiesel and Paraschiv, 2017; 

Pape et al., 2016). There have been studies that have focused on multiple countries. For instance, 

Ziel, (2016) focuses on forecasting electricity prices for Germany, Austria and the Netherlands. 

They extend this method to day-ahead forecasts for an out-of-sample study for Germany, 

Austria, Switzerland, Belgium, the Netherlands, Denmark. Sweden, Poland and Czech Republic. 

Australia has also been the subject of empirical focus on intraday electricity price forecasting 

(Panagiotelis and Smith, 2008).  

Pape, Hagemann and Weber, (2016) and Kiesel and Paraschiv, (2017) provide the most relevant 

basis for this research. They use regression methods to forecast imbalance and electricity prices 
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for intraday markets. The impact from both wind and photovoltaic RES is considered in both 

their works. However, Pape, Hagemann and Weber, (2016)’s study is limited to hourly forecasts 

using data from two calendar years. They investigate both intraday prices and day-ahead prices. 

Their methodology is capable of capturing information variabilities across time. Kiesel and 

Paraschiv, (2017) focuses on quarter-hourly intraday prices using forecast errors for wind and 

photovoltaic energy. They build a link with volume of trades in the day-ahead market based on 

traditional electricity generation sources. Their results are achieved by analyzing intraday 

bidding data from EPEX SPOT. Kiesel and Paraschiv, (2017) uses regime switching to 

distinguish between high and low demand quotes. They also employ an indicator function to 

differentiate between positive and negative forecasting errors in renewables.  

Pape, Hagemann and Weber, (2016) use expected prices from a fundamental model (Weron, 

2014) and the price from the same hour of the last day/previous hour as explanatory variables. 

Kiesel and Paraschiv, (2017) considers the hourly day-ahead price, intraday price and volume of 

trades along with wind and photovoltaic forecast errors. Expected power plant availability, 

expected demand and control area balance are other factors considered in their model. The 

control area balance refers to “the sum of all balance group deviations of balance groups 

registered at the TSO and of the relevant balance groups owned by the TSO” (Kiesel and 

Paraschiv, 2017 pp. 80-81). Paraschiv, Fleten and Schürle, (2015) distinguishes between 

summer/winter, peak/off-peak hours. This is extended by Kiesel and Paraschiv, (2017) as they 

introduce a dummy variable that corresponds to the time of the day/season based on energy 

demand patterns in Germany. This dummy variable has eight distinct variables differentiated by 

the season and the peak/off-peak. Kiesel and Paraschiv, (2017)’s model yields R-squared values 

ranging between 28.76% and 37.99%, depending on the season and peak/off-peak segmentation.    

Distinct from most of the previous research we do not seek to develop superior forecasting 

models for electricity imbalance volumes or spot prices in our study. Instead this research looks 

to estimate the effect of wind and solar electricity forecast errors on these variables. Unlike 

preceding studies, our research is solely based on the higher frequency, intra-day markets with a 

quarter hourly data granularity. This is an area where policies to encourage the provision of more 

timely, more accurate forecasts could be beneficial. 
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3.! Method 

We seek to model how RES (wind and PV) forecast errors affect the imbalance volume and 

EPEX Spot price. We also introduce two control variables, adaptive price response and adaptive 

imbalance response, in this study. These concepts are taken from Karakatsani & Bunn (2008) to 

measure the amount of market participant learning from the past events. In the absence of good 

forecasts, one would expect to see more adaptive behaviour in price formation. 

3.1 Data and explanatory variables 

This research is based on EPEX SPOT intraday quarter-hourly data for Germany for the 2014 

calendar year (7 days a week). The variables we employ for this study are presented in Table 2. 

The descriptive statistics for these variables are presented in Table 3. Our data shows that during 

the year 2014, negative prices occurred 6.3% of the quarter hourly time periods observed. The 

data also shows that 49% of the time imbalances are positive, which is close to what one would 

expect (50%) if imbalance was to be unbiased, random forecast errors by the market participants. 

Following previous considerations of imbalance (Bueno-Lorenzo et al., 2013; Usaola and 

Moreno, 2009) and price (Kiesel and Paraschiv, 2017) we use variables that all have a quarter-

hourly data granularity. As explained in Table 2, Adaptive Imbalance refers to the imbalance 

two-periods prior to delivery. The Adaptive Price refers to the EPEX SPOT price two-periods 

prior to delivery. The two-period lagged Realized Total Load is also considered. Since July 

2015, energy trading in Germany is concluded 30 minutes (two trading periods) before the final 

delivery (EPEX SPOT, 2018). Kiesel and Paraschiv (2017) use the PV and wind forecasts in 

their model. We extend this and use the corresponding forecast errors from two periods prior to 

delivery.  

We analyzed empirical price data of the German electricity market (Frauenhofer ISE, 2018). Our 

analysis identifies thirteen distinctly different price levels that could be differentiated as per 

seasonality and peak/off-peak periods of the day. This is an extension of the dummy variable 

introduced by Kiesel and Paraschiv (2017). The period between March 21 and September 21 are 

considered as summer while the rest are considered as winter for this study. The dummy variable 

categories are as follows; 
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•! Summer  

o! Morning pattern (peak) – 08:00 to 13:00 

o! Afternoon trough (off-peak) – 13:00 to 14:00 

o! Afternoon pattern (peak) – 14:00 to 18:00 

o! Evening peak – 18:00 – 20:00 and 01:00 to 03:00 

o! Evening descending pattern (off-peak) – 20:00 – 01:00  

o! Early morning ascending pattern (off-peak) – 03:00 to 07:00 

•! Winter 

o! Morning peak – 07:00 to 8:00 

o! Morning pattern (peak) - 08:00 to 12:00 

o! Afternoon trough (off-peak) – 12:00 to 13:00  

o! Afternoon pattern (peak) – 13:00 to 17:00 

o! Evening peak – 17:00 to 19:00 and 21:00 to 23:00 

o! Descending pattern (off-peak) – 20:00 to 21:00 and 04:00 to 07:00 

o! Night ascending pattern (off-peak) – 23:00 to 03:00 
 

Table 2:  Explanatory variables and their data granularity 
 

Variable Description Data granularity 

Imbalance (dependent 

variable) 

The electricity supply-
demand imbalance. It is 

positive when the electricity 
supply is less than the 

demand and the TSO needs to 
activate extra reserve. 

Quarter-hourly 

EPEX Spot price 

(dependent variable) 

Wholesale electricity price. Quarter-hourly 

One Day Lagged Price EPEX SPOT price for 
corresponding time slot one 

day prior to delivery. 

Quarter-hourly 

One Day Lagged Imbalance Supply-demand imbalance for 
corresponding time slot one 

day prior to delivery. 

Quarter-hourly 

Adaptive Imbalance Two-period-lagged value of 
imbalance. 

Quarter-hourly 

Adaptive Price Two-period-lagged value of 
EPEX Spot price. 

Quarter-hourly 

Realized Total Load Two-period lagged actual 
electricity load. 

Quarter-hourly 

PV Forecast Error The actual electricity 
production by PV sources 

minus the forecasted amount. 

Quarter-hourly 
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Wind Forecast Error The actual electricity 
production by wind sources 

minus the forecasted amount. 

Quarter-hourly 

Seasonality & Peak 

Variable 

Dummy variable based on 
season and peak/off-peak 

period of the day 

Quarter-hourly 

 

 

We perform an augmented Dickey-Fuller test (ADF test) to test whether the variables are 

stationary. For all variables, we reject the null hypothesis of a unit root at a 1% significance 

levels, meaning that the data is stationary. 

 

3.2 Econometric models 

We present the following linear model that takes into consideration all the explanatory variables 

discussed in section 3.1.  

!"#$%$&'( ) *+, - +./&(*0$1*2$33(4*!"#$%$&'( - +564$789:(*!"#$%$&'(*

- +;64$789:(*<=9'(* - +>?($%9@(4*AB8$%*2B$4CD. - +E<F*GB=('$H8*(==B=

- +IJ9&4*GB=('$H8*(==B= - +KL($HB&$%981M<($N*F$=9$#%( - O 
P<PQ*L</A*7=9'(

) *R, - R./&(*0$1*2$33(4*<=9'( - R564$789:(*!"#$%$&'(*

- R;64$789:(*<=9'(* - R>?($%9@(4*AB8$%*2B$4CD. - RE<F*GB=('$H8*(==B=

- RIJ9&4*GB=('$H8*(==B= - RKL($HB&$%981M<($N*F$=9$#%( - O 
 

Estimating the tails of the EPEX Spot price and imbalance distributions are crucial risk 

considerations for the electricity market players. Quantile regression is an extension of ordinary 

least square regression that aims to estimate the median and quantiles of the response variables 

(Koenker and Bassett, 1978; Koenker and Hallock, 2001). Thus, it is a method that can provide 

Table 3: Descriptive Statistics, N= 34616 
 

Descriptive Variable Mean Std Dev Min Max Skewness Kurtosis 

Realized Total Load 52178.41 31281 73218 -0.0208 1.9222 

Wind Forecast Error -188.8289 -5187.800 7802.800 0.5434 6.8133 

PV Forecast Error -68.87206 -9794.500 4081.600 -1.9191 19.1649 

Dependent Variable Mean Std Dev Min Max Skewness Kurtosis 

EPEX Spot Price 33.08333 -200 398 0.6346 13.8410 

Imbalance -8.139229 -3195.540 3772.265 0.02045 5.8623 
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insightful solutions that explain tail characteristics (Koenker and Bassett, 1978). In this research 

using a range of regression models, OLS, Quantile 50, Quantile 05 and Quantile 95, we analyze 

the factors that affect the price and imbalance risks. 

Table 4: OLS and quantile regression results, Dependent Variable: EPEX SPOT price, N=34614 
 

Regressors OLS Estimate 

(SE) 

Tau=5% 

Estimate (SE) 

Tau=50% 

Estimate (SE) 

Tau=95% 

Estimate (SE) 

One Day Lagged 

Price 

0.277189**** 
(0.00453) 

0.23812**** 
(0.00932) 

0.30079**** 
(0.00453) 

0.25011**** 
(0.00934) 

Adaptive 

Imbalance 

0.008583**** 
(0.00021) 

0.00900**** 
(0.00035) 

0.00795**** 
(0.00022) 

0.00835**** 
(0.00052) 

Adaptive Price 0.131492**** 
(0.00516) 

0.14937**** 
(0.00504) 

0.07371**** 
(0.00484) 

0.13526**** 
(0.01240) 

Realized Total 

Load 

0.00058**** 
(0.00001) 

0.00046**** 
(0.00003) 

0.00056**** 
(0.00001) 

0.00075**** 
(0.00003) 

PV Forecast 

Error 

-0.00228**** 
(0.00012) 

-0.00148**** 
(0.00020) 

-0.00206**** 
(0.00013) 

-0.00457**** 
(0.00032) 

Wind Forecast 

Error 

-0.00336**** 
(0.00011) 

-0.00326**** 
(0.00021) 

-0.00338**** 
(0.00011) 

-0.00351**** 
(0.00025) 

Seasonality & 

Peak Variable 

-0.10206** 
(0.03503) 

0.04876* 
(0.07076) 

-0.11108** 
(0.03628) 

-0.22683** 
(0.08555) 

R squared 0.333121    
  Note: *p < .05, **p < .01, ***p < .001, ****p < .0001 
 

Table 5: OLS and quantile regression results, Dependent variable = Imbalance, N=34615 
 

Regressors OLS Estimate 

(SE) 

Tau=5% 

Estimate (SE) 

Tau=50% 

Estimate (SE) 

Tau=95% 

Estimate (SE) 

One Day Lagged 

Imbalance 

0.110355**** 
(0.00359) 

0.12735**** 
(0.00846) 

0.10708**** 
(0.00399) 

0.10269**** 
(0.00855) 

Adaptive 

Imbalance 

0.75592**** 
(0.00394) 

0.81492**** 
(0.00918) 

0.73559**** 
(0.00443) 

0.72922**** 
(0.00910) 

Adaptive Price -3.77761**** 
(0.09332) 

-3.70965**** 
(0.19724) 

-3.86624**** 
(0.10259) 

-3.68606**** 
(0.18407) 

Realized Total 

Load 

0.003731**** 
(0.00024) 

-0.00213*** 
(0.00055) 

0.00288**** 
(0.00026) 

0.01121**** 
(0.00054) 

PV Forecast 

Error 

-0.01206**** 
(0.00221) 

-0.00839 
(0.00530) 

-0.01064*** 
(0.00276) 

-0.02965**** 
(0.00536) 

Wind Forecast 

Error 

-0.02428**** 
(0.00194) 

-0.04056**** 
(0.00468) 

-0.01955**** 
(0.00218) 

-0.01339** 
(0.00459) 

Seasonality & 

Peak Variable 

-3.43546**** 
(0.63238) 

1.97508 
(1.46663) 

-4.37813**** 
(0.67260) 

-8.04191**** 
(1.40177) 

R squared 0.560604    
  Note: *p < .05, **p < .01, ***p < .001, ****p < .0001 
 

Based on autocorrelation and partial autocorrelation outputs we derived a ARMA where AR(1) 

and MA(1). Although the p values are significant, the Ljung Box value is significant which 
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suggests a correlation between the residuals. This suggests that there ARMA cannot clearly 

explain the relationship between imbalance and the other variables. Given this the analysis 

exhausted the use of ARMA to understand imbalance and its effects. 

4.! Discussion 

Using OLS and different levels of quantile regression, we analyze the impact of PV and Wind 

forecast production errors on imbalance and EPEX Spot Prices. We also studied the impact of 

adaptation. The results show that adaptive price has a significantly positive effect on EPEX spot 

price. This means that high spot prices persist in the market. The results from quantile 

regressions show, this effect is higher in the tails of the distribution compared to the mean or 

median. Therefore, extreme prices are more likely to impact the future price values. 

In the study of EPEX Spot price, wind and PV production forecast errors are observed to have 

significant negative effects. High production forecast errors for PV or wind means that the actual 

electricity production from these sources is higher than what was initially forecasted. According 

to the results, this leads to a lower electricity spot price, explained by the resulting surplus in 

electricity. The results from different estimations show that whilst the effect of wind is similar 

across the quantiles, for PV it increases steadily from the lower to the upper quantiles.  

We also observe that adaptive imbalance has a significantly positive effect on the spot price. This 

effect exists in mean and different quantile level estimations and it is increasing with the quantile 

levels. This means that when imbalance is high in one period, an increase in price is likely. This 

impact is higher when the prices are extremely high. Results of estimating imbalance show that, 

adaptive imbalance has positive impacts on imbalance. This impact is higher in the lower 

quantile level, which is the situation when there is excess supply in the balancing market. 

The results of the quantile regression indicate that the realized total load has an interesting 

relationship with the imbalance and the electricity price (see Figure 4 a and b). As the quantile 

level increases, the coefficient of the realized total load increases. However, this relationship 

appears not to be linear at the tails. Analysis of variance (ANOVA) shows that the coefficients 

for the quantile level of tau = 5% is significantly different to that of tau = 95% (p < 0.0001). This 

is further evident from the horizontal red line depicting the OLS coefficient and the dotted red 

lines denoting the confidence intervals. The results suggest that when the realized total load is 

high, the marginal cost to purchase electricity rises due to scarcity in supply.  
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According to the results, both wind and PV production forecast errors have negative significant 

effects on imbalance. When the production forecast error is high, the electricity produced is more 

than the forecasted value. This surplus in energy leads to a lower imbalance. We also observe 

that Adaptive Price negatively affects the imbalance. This suggests that a higher spot price, is 

followed by excess electricity supply (i.e. when the EPEX spot price is high, intuitively it will 

attract more supply offering in the market). 

Further analysis using quantile regression indicates that the coefficient decreases for the solar 

forecast error as the quantile level increases (see Figure 4c and 4d). This reinforces that high and 

positive solar forecast errors have a stronger negative effect on the imbalance volume and spot 

price. The results from the wind forecast error provides interesting insights. The wind forecast 

error seems to mostly conform to the results from the OLS regression and has less impact on the 

spot price (see Figure 4e). However, quantile level for the wind forecast error has a positive 

relationship with the imbalance volume as per the results of the quantile regression (see Figure 

4f). While negative wind forecast errors contribute to lower coefficients, positive wind forecast 

errors lead to higher coefficients in determining the imbalance volumes. 

Improvements in wind forecasting are intuitively linked to more accurate predictions of the 

imbalance.  Without improving its forecast accuracy, promoting wind energy would lead to 

many complications as it attains a larger portion of the electricity market. The uncertainty in 

supply would, if not well-forecast, necessitate the greater use of conventional peaking plant, such 

as gas turbine. Moreover, better forecasts should lead to a better managed system with lower 

real-time price volatility which would benefit all stakeholders of the electricity market. 
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Figure 4. Quantile regression results for realized total load 
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5.! Conclusions and Policy Implications 

The renewable energy sector has grown rapidly over the past several decades buoyed by 

supportive policies and public pressure. Environmental benefits and low running costs have 

promoted their use despite the high capital costs required to install facilities. Evidence indicates 

that increased renewable energy inputs to the energy market creates complexities. The 

intermittency of electricity generation from renewable sources is a main cause for this. Despite 

recent advancements in accurately forecasting wind and PV energy generation, there remains 

room for improving forecast quality. This is especially true for wind forecasts. Due to the 

intermittency in wind and PV energy generation and inaccurate forecasts, balancing electricity 

supply with demand and the energy price are considerable.  

We build on previous research to deliver a method to forecast real-time energy (supply-demand) 

imbalance and EPEX spot prices using quantile regression analysis using data from the German 

electricity spot market. The results of our study confirm that higher wind and PV production 

forecast errors decrease imbalance and the spot price. Our findings show that this relationship is 

more profound for wind energy forecast errors. However, the effects vary from the lower to the 

upper risk levels of the distributions. Evidently, improvements in forecast accuracy will reduce 

the volatilities of both spot price and imbalance volumes, and this would enhance welfare of 

producers, system operators and consumers. The findings outline the importance of improving 

forecast accuracy to ensure the smooth functioning of the electricity market.  

It would not be unreasonable to envisage a requirement for system operators to be incentivised to 

provide more accurate wind and solar forecast to the market. Evidently forecasts are different 

from information, and they can be wrong.  But the practice of system operators providing market 

indications is already widespread and, as noted in the Introduction, Ofgem (2018) has already 

incorporated an accuracy target into its regulatory regime for GB demand forecasts. This 

principle should be extended to the intraday market alongside the existing requirement for full 

system transparency, as in the EU REMIT legislation. 
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