54 research outputs found

    Glycogen Synthase Kinase 3 (GSK3) Inhibitor, SB-216763, Promotes Pluripotency in Mouse Embryonic Stem Cells

    Get PDF
    Canonical Wnt/β-catenin signaling has been suggested to promote self-renewal of pluripotent mouse and human embryonic stem cells. Here, we show that SB-216763, a glycogen synthase kinase-3 (GSK3) inhibitor, can maintain mouse embryonic stem cells (mESCs) in a pluripotent state in the absence of exogenous leukemia inhibitory factor (LIF) when cultured on mouse embryonic fibroblasts (MEFs). MESCs maintained with SB-216763 for one month were morphologically indistinguishable from LIF-treated mESCs and expressed pluripotent-specific genes Oct4, Sox2, and Nanog. Furthermore, Nanog immunostaining was more homogenous in SB-216763-treated colonies compared to LIF. Embryoid bodies (EBs) prepared from these mESCs expressed early-stage markers for all three germ layers, and could efficiently differentiate into cardiac-like cells and MAP2-immunoreactive neurons. To our knowledge, SB-216763 is the first GSK3 inhibitor that can promote self-renewal of mESC co-cultured with MEFs for more than two months

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Repurposing Pitavastatin and L-Glutamine: Replenishing β-Cells in Hyperlipidemic Type 2 Diabetes Mouse Model

    No full text
    Type 2 diabetes (T2D) is associated with obesity and declining β-cells. L-glutamine has been implicated in the amelioration of T2D by virtue of its incretin secretagogue property while, there are mixed reports on pitavastatin’s adiponectin potentiating ability. We aimed to investigate the effect of pitavastatin (P), L-glutamine (LG), and combination (P + LG) on glycemic control and β-cell regeneration in a high-fat diet (HFD) + streptozotocin (STZ)-induced T2D mouse model. C57BL6/J mice treated with HFD + STZ were divided into four groups: diabetes control (HFD + STZ), P, LG, and P + LG, while the control group (NCD) was fed with the normal-chow diet. Significant amelioration was observed in the combination therapy as compared to monotherapies in respect of (i) insulin resistance, glucose intolerance, lipid profile, adiponectin levels, and mitochondrial complexes I, II, and III activities, (ii) reduced phosphoenolpyruvate carboxykinase, glucose 6-phophatase, glycogen phosphorylase, and GLUT2 transcript levels with increased glycogen content in the liver, (iii) restoration of insulin receptor 1β, pAkt/Akt, and AdipoR1 protein levels in skeletal muscle, and (iv) significant increase in islet number due to β-cell regeneration and reduced β-cell death. L-glutamine and pitavastatin in combination can ameliorate T2D by inducing β-cell regeneration and regulating glucose homeostasis

    Biomechanical investigation of arm position on deforming muscular forces in proximal humerus fractures

    No full text
    BackgroundMuscular forces drive proximal humeral fracture deformity, yet it is unknown if arm position can help mitigate such forces. Our hypothesis was that glenohumeral abduction and humeral internal rotation decrease the pull of the supraspinatus and subscapularis muscles, minimizing varus fracture deformity.MethodsA medial wedge osteotomy was performed in eight cadaveric shoulders to simulate a two-part fracture. The specimens were tested on a custom shoulder testing system. Humeral head varus was measured following physiologic muscle loading at neutral and 20° humeral internal rotation at both 0° and 20° glenohumeral abduction.ResultsThere was a significant decrease in varus deformity caused by the subscapularis (p&lt;0.05) at 20° abduction. Significantly increasing humeral internal rotation decreased varus deformity caused by the subscapularis (p&lt;0.05) at both abduction angles and that caused by the supraspinatus (p&lt;0.05) and infraspinatus (p&lt;0.05) at 0° abduction only.ConclusionsPostoperative shoulder abduction and internal rotation can be protective against varus failure following proximal humeral fracture fixation as these positions decrease tension on the supraspinatus and subscapularis muscles. Use of a resting sling that places the shoulder in this position should be considered

    Redox-control of the alarmin, Interleukin-1α

    Get PDF
    The pro-inflammatory cytokine Interleukin-1α (IL-1α) has recently emerged as a susceptibility marker for a wide array of inflammatory diseases associated with oxidative stress including Alzheimer's, arthritis, atherosclerosis, diabetes and cancer. In the present study, we establish that expression and nuclear localization of IL-1α are redox-dependent. Shifts in steady-state H2O2 concentrations (SS-[H2O2]) resulting from enforced expression of manganese superoxide dismutase (SOD2) drive IL-1α mRNA and protein expression. The redox-dependent expression of IL-1α is accompanied by its increased nuclear localization. Both IL-1α expression and its nuclear residency are abrogated by catalase co-expression. Sub-lethal doses of H2O2 also cause IL-1α nuclear localization. Mutagenesis revealed IL-1α nuclear localization does not involve oxidation of cysteines within its N terminal domain. Inhibition of the processing enzyme calpain prevents IL-1α nuclear localization even in the presence of H2O2. H2O2 treatment caused extracellular Ca2+ influx suggesting oxidants may influence calpain activity indirectly through extracellular Ca2+ mobilization. Functionally, as a result of its nuclear activity, IL-1α overexpression promotes NF-kB activity, but also interacts with the histone acetyl transferase (HAT) p300. Together, these findings demonstrate a mechanism by which oxidants impact inflammation through IL-1α and suggest that antioxidant-based therapies may prove useful in limiting inflammatory disease progression
    corecore