5,144 research outputs found

    Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources

    Get PDF
    We present a technique for the accurate estimation of large-scale errors in an antenna surface using astronomical sources and detectors. The technique requires several out-of-focus images of a compact source and the signal-to-noise ratio needs to be good but not unreasonably high. For a given pattern of surface errors, the expected form of such images can be calculated directly. We show that it is possible to solve the inverse problem of finding the surface errors from the images in a stable manner using standard numerical techniques. To do this we describe the surface error as a linear combination of a suitable set of basis functions (we use Zernike polynomials). We present simulations illustrating the technique and in particular we investigate the effects of receiver noise and pointing errors. Measurements of the 15-m James Clerk Maxwell telescope made using this technique are presented as an example. The key result is that good measurements of errors on large spatial scales can be obtained if the input images have a signal-to-noise ratio of order 100 or more. The important advantage of this technique over transmitter-based holography is that it allows measurements at arbitrary elevation angles, so allowing one to characterise the large scale deformations in an antenna as a function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics

    Out-Of-Focus Holography at the Green Bank Telescope

    Get PDF
    We describe phase-retrieval holography measurements of the 100-m diameter Green Bank Telescope using astronomical sources and an astronomical receiver operating at a wavelength of 7 mm. We use the technique with parameterization of the aperture in terms of Zernike polynomials and employing a large defocus, as described by Nikolic, Hills & Richer (2006). Individual measurements take around 25 minutes and from the resulting beam maps (which have peak signal to noise ratios of 200:1) we show that it is possible to produce low-resolution maps of the wavefront errors with accuracy around a hundredth of a wavelength. Using such measurements over a wide range of elevations, we have calculated a model for the wavefront-errors due to the uncompensated gravitational deformation of the telescope. This model produces a significant improvement at low elevations, where these errors are expected to be the largest; after applying the model, the aperture efficiency is largely independent of elevation. We have also demonstrated that the technique can be used to measure and largely correct for thermal deformations of the antenna, which often exceed the uncompensated gravitational deformations during daytime observing. We conclude that the aberrations induced by gravity and thermal effects are large-scale and the technique used here is particularly suitable for measuring such deformations in large millimetre wave radio telescopes.Comment: 10 pages, 7 figures (accepted by Astronomy & Astrophysics

    Science and Technology Review December 2011

    Full text link
    This month's issue has the following articles: (1) High-Performance Computing for Energy Innovation - Commentary by Tomas Diaz de la Rubia; (2) Simulating the Next Generation of Energy Technologies - Projects using high-performance computing demonstrate Livermore's computational horsepower and improve the quality of energy solutions and the speed of deployment; (3) ARC Comes into Focus - The Advanced Radiographic Capability, a petawatt-class laser, can penetrate dense objects to reveal material dynamics during National Ignition Facility experiments; (4) A New Method to Track Viral Evolution - A sensitive technique developed at the Laboratory can identify virus mutations that may jump from host to host; and (5) Data for Defense: New Software Finds It Fast - Department of Defense warfighters and planners are using Livermore software systems to extract pertinent information from massive amounts of data

    Science and Technology Review January/February 2012

    Full text link
    This month's issue has the following articles: (1) Dawn of a New Era of Scientific Discovery - Commentary by Edward I. Moses; (2) At the Frontiers of Fundamental Science Research - Collaborators from national laboratories, universities, and international organizations are using the National Ignition Facility to probe key fundamental science questions; (3) Livermore Responds to Crisis in Post-Earthquake Japan - More than 70 Laboratory scientists provided round-the-clock expertise in radionuclide analysis and atmospheric dispersion modeling as part of the nation's support to Japan following the March 2011 earthquake and nuclear accident; (4) A Comprehensive Resource for Modeling, Simulation, and Experiments - A new Web-based resource called MIDAS is a central repository for material properties, experimental data, and computer models; and (5) Finding Data Needles in Gigabit Haystacks - Livermore computer scientists have developed a novel computer architecture based on 'persistent' memory to ease data-intensive computations

    Science and Technology Review July/August 2011

    Full text link

    Science and Technology Review June 2011

    Full text link
    Abstract not provide

    Electrical current-driven pinhole formation and insulator-metal transition in tunnel junctions

    Full text link
    Current Induced Resistance Switching (CIS) was recently observed in thin tunnel junctions (TJs) with ferromagnetic (FM) electrodes and attributed to electromigration of metallic atoms in nanoconstrictions in the insulating barrier. The CIS effect is here studied in TJs with two thin (20 \AA) non-magnetic (NM) Ta electrodes inserted above and below the insulating barrier. We observe resistance (R) switching for positive applied electrical current (flowing from the bottom to the top lead), characterized by a continuous resistance decrease and associated with current-driven displacement of metallic ions from the bottom electrode into the barrier (thin barrier state). For negative currents, displaced ions return into their initial positions in the electrode and the electrical resistance gradually increases (thick barrier state). We measured the temperature (T) dependence of the electrical resistance of both thin- and thick-barrier states (RbR_b and RB_B respectively). Experiments showed a weaker R(T) variation when the tunnel junction is in the RbR_b state, associated with a smaller tunnel contribution. By applying large enough electrical currents we induced large irreversible R-decreases in the studied TJs, associated with barrier degradation. We then monitored the evolution of the R(T) dependence for different stages of barrier degradation. In particular, we observed a smooth transition from tunnel- to metallic-dominated transport. The initial degradation-stages are related to irreversible barrier thickness decreases (without the formation of pinholes). Only for later barrier degradation stages do we have the appearance of metallic paths between the two electrodes that, however, do not lead to metallic dominated transport for small enough pinhole radius.Comment: 10 pages, 3 figure

    Electron Density Measurements in a Pulse-Repetitive Microwave Discharge in Air

    Get PDF
    We have developed a technique for absolute measurements of electron density in pulse-repetitive microwave discharges in air. The technique is based on the time-resolved absolute intensity of a nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N2C3Πu (ν role= presentation \u3eν = 0) state. This new approach bridges the gap between two existing electron density measurement methods (Langmuir probe and Stark broadening). The electron density is obtained from the time-dependent rate equation for the population of N2C3Πu (ν role= presentation \u3eν = 0) using recorded waveforms of the absolute C3Πu → B3Πg (0-0) band intensity, the forward and reflected microwave power density. Measured electron density waveforms using numerical and approximated analytical methods are presented for the case of pulse repetitive planar surface microwave discharge at the aperture of a horn antenna covered with alumina ceramic plate. The discharge was generated in air at 11.8 Torr with a X-band microwave generator using 3.5 μs microwave pulses at peak power of 210 kW. In this case, we were able to time resolve the electron density within a single 3.5 μs pulse. We obtained (9.0 ± 0.6) × 1013 cm–3 for the peak and (5.0 ± 0.6) × 1013 cm–3 for the pulse-average electron density. The technique presents a convenient, non-intrusive diagnostic method for local, time-defined measurements of electron density in short duration discharges near atmospheric pressures
    • …
    corecore