7 research outputs found

    Dose-finding study of ibrutinib and venetoclax in relapsed or refractory mantle cell lymphoma

    Get PDF
    Relapsed Mantle cell lymphoma (MCL) is often treated with Bruton\u27s tyrosine kinase inhibitors (BTKi); however, post-BTKi relapse can be challenging. Adding venetoclax (VEN) to ibrutinib (IBR) has shown synergy in preclinical MCL models. Prior MCL studies of the combination show promising efficacy but have conducted limited dose finding. We sought to identify the optimal dosing combination, based on efficacy and toxicity, utilizing a continual reassessment method of 6 combinations of IBR (280 mg, 420 mg, and 560 mg by mouth daily) and VEN (max dose of 200 mg and 400 mg by mouth daily). Eligible participants were not previously exposed to BTKi and not high risk for tumor lysis syndrome (TLS). VEN, initiated first at 100 mg, then at 20 mg by mouth daily after a TLS event, was started prior to adding IBR and ramped-up based on the dose level assigned. Combination treatment continued for six 28-day cycles. Thirty-five participants were enrolled and treated. One TLS event occurred with starting dose of 100 mg VEN; no TLS was seen with 20 mg. The optimal dosing combination was considered to be VEN 200 mg and IBR 420 mg with an overall response rate (ORR) of 93.8% (95% CI: 73.6% to 99.7%) and DLT incidence of 6.2% (95% CI: 0.3% to 26.4%). ORR for all arms was 82.3% (28/34; 95% CI: 65.5% to 93.2%) with a complete response (CR) rate of 42.4% (14/33; 95% CI: 25.5% to 60.8%). A participant was not allocated to IBR 560 mg and VEN 400 mg. ORR benefit was not seen with higher dosing combinations and toxicity was higher; a comparison made within the limitations of small cohorts. Resistance was seen in nearly all arms. This trial was registered at www.clinicaltrials.gov #NCT02419560

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Trial to evaluate the immunogenicity and safety of a melanoma helper peptide vaccine plus incomplete Freund’s adjuvant, cyclophosphamide, and polyICLC (Mel63)

    No full text
    Background Peptide vaccines designed to stimulate melanoma-reactive CD4+ T cells can induce T cell and antibody (Ab) responses, associated with enhanced overall survival. We hypothesized that adding toll-like receptor 3 agonist polyICLC to an incomplete Freund’s adjuvant (IFA) would be safe and would support strong, durable CD4+ T cell and Ab responses. We also hypothesized that oral low-dose metronomic cyclophosphamide (mCy) would be safe, would reduce circulating regulatory T cells (T-regs) and would further enhance immunogenicity.Participants and methods An adaptive design based on toxicity and durable CD4+ T cell immune response (dRsp) was used to assign participants with resected stage IIA-IV melanoma to one of four study regimens. The regimens included a vaccine comprising six melanoma peptides restricted by Class II MHC (6MHP) in an emulsion with IFA alone (Arm A), with IFA plus systemic mCy (Arm B), with IFA+ local polyICLC (Arm C), or with IFA+ polyICLC+ mCy (Arm D). Toxicities were recorded (CTCAE V.4.03). T cell responses were measured by interferon γ ELIspot assay ex vivo. Serum Ab responses to 6MHP were measured by ELISA. Circulating T-regs were assessed by flow cytometry.Results Forty-eight eligible participants were enrolled and treated. Early data on safety and dRsp favored enrollment on arm D. Total enrollment on Arms A-D were 3, 7, 6, and 32, respectively. Treatment-related dose-limiting toxicities (DLTs) were observed in 1/7 (14%) participants on arm B and 2/32 (6%) on arm D. None exceeded the 25% DLT threshold for early closure to enrollment for any arm. Strong durable T cell responses to 6MHP were detected ex vivo in 0%, 29%, 67%, and 47% of participants on arms A-D, respectively. IgG Ab responses were greatest for arms C and D. Circulating T-regs frequencies were not altered by mCy.Conclusions 6MHP vaccines administered with IFA, polyICLC, and mCy were well tolerated. The dRsp rate for arm D of 47% (90% CI 32 to 63) exceeded the 18% (90% CI 11 to 26) rate previously observed with 6MHP in IFA alone. Vaccination with IFA+ polyICLC (arm C) also showed promise for enhancing T cell and Ab responses
    corecore