34 research outputs found

    Wafer-scale nanofabrication of telecom single-photon emitters in silicon

    Get PDF
    A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm

    Characterization of the Si:Se+ Spin-Photon Interface

    Get PDF
    Silicon is the most-developed electronic and photonic technological platform and hosts some of the highest-performance spin and photonic qubits developed to date. A hybrid quantum technology harnessing an efficient spin-photon interface in silicon would unlock considerable potential by enabling ultralong-lived photonic memories, distributed quantum networks, microwave-to-optical photon converters, and spin-based quantum processors, all linked with integrated silicon photonics. However, the indirect band gap of silicon makes identification of efficient spin-photon interfaces nontrivial. Here we build upon the recent identification of chalcogen donors as a promising spin-photon interface in silicon. We determine that the spin-dependent optical degree of freedom has a transition dipole moment stronger than previously thought [here 1.96(8) D], and the spin T1 lifetime in low magnetic fields is longer than previously thought [here longer than 4.6(1.5) h]. We furthermore determine the optical excited-state lifetime [7.7(4) ns], and therefore the natural radiative efficiency [0.80(9)%], and by measuring the phonon sideband determine the zero-phonon emission fraction [16(1)%]. Taken together, these parameters indicate that an integrated quantum optoelectronic platform based on chalcogen-donor qubits in silicon is well within reach of current capabilities

    Electronic Properties and Structure of Boron–Hydrogen Complexes in Crystalline Silicon

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-06-27, rev-recd 2021-09-04, pub-electronic 2021-09-17Article version: VoRPublication status: PublishedFunder: Department of Science and Technology (DOST), Government of the PhlippinesFunder: Fundação para a CiĂȘncia e a Tecnologia in Portugal; Grant(s): UIDB/50025/2020, UIDP/50025/2020The subject of hydrogen–boron interactions in crystalline silicon is revisited with reference to light and elevated temperature‐induced degradation (LeTID) in boron‐doped solar silicon. Ab initio modeling of structure, binding energy, and electronic properties of complexes incorporating a substitutional boron and one or two hydrogen atoms is performed. From the calculations, it is confirmed that a BH pair is electrically inert. It is found that boron can bind two H atoms. The resulting BH2 complex is a donor with a transition level estimated at E c–0.24 eV. Experimentally, the electrically active defects in n‐type Czochralski‐grown Si crystals co‐doped with phosphorus and boron, into which hydrogen is introduced by different methods, are investigated using junction capacitance techniques. In the deep‐level transient spectroscopy (DLTS) spectra of hydrogenated Si:P + B crystals subjected to heat‐treatments at 100 °C under reverse bias, an electron emission signal with an activation energy of ≈0.175 eV is detected. The trap is a donor with electronic properties close to those predicted for boron–dihydrogen. The donor character of BH2 suggests that it can be a very efficient recombination center of minority carriers in B‐doped p‐type Si crystals. A sequence of boron–hydrogen reactions, which can be related to the LeTID effect in Si:B is proposed

    Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe

    Get PDF
    We identify the dominant source for low-frequency spin qubit splitting noise in a highly isotopically-purified silicon device with an embedded nanomagnet and a spin echo decay time Techo2 = 128 ”s. The power spectral density (PSD) of the charge noise explains both, the clear transition from a 1/f2- to a 1/f-dependence of the splitting noise PSD as well as the experimental observation of a decreasing time-ensemble spin dephasing time, from T∗2≈ 20 ”s, with increasing measurement time over several hours. Despite their strong hyperfine contact interaction, the few 73Ge nuclei overlapping with the quantum dot in the barrier do not limit T∗2, likely because their dynamics is frozen on a few hours measurement scale. We conclude that charge noise and the design of the gradient magnetic field are the key to further improve the qubit fidelity in isotopically purified 28Si/SiGe

    Millisecond electron spin coherence time for erbium ions in silicon

    Full text link
    Spins in silicon that are accessible via a telecom-compatible optical transition are a versatile platform for quantum information processing that can leverage the well-established silicon nanofabrication industry. Key to these applications are long coherence times on the optical and spin transitions to provide a robust system for interfacing photonic and spin qubits. Here, we report telecom-compatible Er3+ sites with long optical and electron spin coherence times, measured within a nuclear spin-free silicon crystal (<0.01% 29Si) using optical detection. We investigate two sites and find 0.1 GHz optical inhomogeneous linewidths and homogeneous linewidths below 70 kHz for both sites. We measure the electron spin coherence time of both sites using optically detected magnetic resonance and observe Hahn echo decay constants of 0.8 ms and 1.2 ms at around 11 mT. These optical and spin properties of Er3+:Si are an important milestone towards using optically accessible spins in silicon for a broad range of quantum information processing applications.Comment: 14 pages, 6 figure

    Indium‐Doped Silicon for Solar Cells—Light‐Induced Degradation and Deep‐Level Traps

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-02-28, rev-recd 2021-06-11, pub-electronic 2021-07-21Article version: VoRPublication status: PublishedFunder: EPSRC (UK); Grant(s): EP/TO25131/1Funder: Department of Science and Technology (DOST), Government of the PhlippinesFunder: Fundação para a CiĂȘncia e a Tecnologia; Id: http://dx.doi.org/10.13039/100008382; Grant(s): UIDB/50025/2020, UIDP/50025/2020Indium‐doped silicon is considered a possible p‐type material for solar cells to avoid light‐induced degradation (LID), which occurs in cells made from boron‐doped Czochralski (Cz) silicon. Herein, the defect reactions associated with indium‐related LID are examined and a deep donor is detected, which is attributed to a negative‐U defect believed to be InsO2. In the presence of minority carriers or above bandgap light, the deep donor transforms to a shallow acceptor. An analogous transformation in boron‐doped material is related to the BsO2 defect that is a precursor of the center responsible for BO LID. The electronic properties of InsO2 are determined and compared to those of the BsO2 defect. Structures of the BsO2 and InsO2 defects in different charges states are found using first‐principles modeling. The results of the modeling can explain both the similarities and the differences between the BsO2 and InsO2 properties

    High-fidelity operation and algorithmic initialisation of spin qubits above one kelvin

    Full text link
    The encoding of qubits in semiconductor spin carriers has been recognised as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale. However, the operation of the large number of qubits required for advantageous quantum applications will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 kelvin, where the cooling power is orders of magnitude higher. Here, we tune up and operate spin qubits in silicon above 1 kelvin, with fidelities in the range required for fault-tolerant operation at such temperatures. We design an algorithmic initialisation protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies, and incorporate high-fidelity radio-frequency readout to achieve an initialisation fidelity of 99.34 per cent. Importantly, we demonstrate a single-qubit Clifford gate fidelity of 99.85 per cent, and a two-qubit gate fidelity of 98.92 per cent. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for high-fidelity operation to be possible, surmounting a major obstacle in the pathway to scalable and fault-tolerant quantum computation

    Consistency of high-fidelity two-qubit operations in silicon

    Full text link
    The consistency of entangling operations between qubits is essential for the performance of multi-qubit systems, and is a crucial factor in achieving fault-tolerant quantum processors. Solid-state platforms are particularly exposed to inconsistency due to the materials-induced variability of performance between qubits and the instability of gate fidelities over time. Here we quantify this consistency for spin qubits, tying it to its physical origins, while demonstrating sustained and repeatable operation of two-qubit gates with fidelities above 99% in the technologically important silicon metal-oxide-semiconductor (SiMOS) quantum dot platform. We undertake a detailed study of the stability of these operations by analysing errors and fidelities in multiple devices through numerous trials and extended periods of operation. Adopting three different characterisation methods, we measure entangling gate fidelities ranging from 96.8% to 99.8%. Our analysis tools also identify physical causes of qubit degradation and offer ways to maintain performance within tolerance. Furthermore, we investigate the impact of qubit design, feedback systems, and robust gates on implementing scalable, high-fidelity control strategies. These results highlight both the capabilities and challenges for the scaling up of spin-based qubits into full-scale quantum processors
    corecore