25 research outputs found

    Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts α -linolenate, tryptophan, tyrosine and other major metabolic pathways

    Get PDF
    Overexposure to the commonly used herbicide atrazine (ATR) affects several organ systems, including the brain. Previously, we demonstrated that short-term oral ATR exposure causes behavioral deficits and dopaminergic and serotonergic dysfunction in the brains of mice. Using adult male C57BL/6 mice, the present study aimed to investigate effects of a 10-day oral ATR exposure (0, 5, 25, 125, or 250 mg/kg) on the mouse plasma metabolome and to determine metabolic pathways affected by ATR that may be reflective of ATR’s effects on the brain and useful to identify peripheral biomarkers of neurotoxicity. Four h after the last dosing on day 10, plasma was collected and analyzed with high-performance, dual chromatography-Fourier-transform mass spectrometry that was followed by biostatistical and bioinformatic analyses. ATR exposure (≄5 mg/kg) significantly altered plasma metabolite profile and resulted in a dose-dependent increase in the number of metabolites with ion intensities significantly different from the control group. Pathway analyses revealed that ATR exposure strongly correlated with and disrupted multiple metabolic pathways. Tyrosine, tryptophan, linoleic acid and α-linolenic acid metabolic pathways were among the affected pathways, with α-linolenic acid metabolism being affected to the greatest extent. Observed effects of ATR on plasma tyrosine and tryptophan metabolism may be reflective of the previously reported perturbations of brain dopamine and serotonin homeostasis, respectively. ATR-caused alterations in the plasma profile of α-linolenic acid metabolism are a potential novel and sensitive plasma biomarker of ATR effect and plasma metabolomics could be used to better assess the risks, including to the brain, associated with ATR overexposure

    Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets.

    Get PDF
    Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning

    Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis

    No full text
    Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems

    Disposition of the Herbicide 2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine) and Its Major Metabolites in Mice: A Liquid Chromatography/Mass Spectrometry Analysis of Urine, Plasma, and Tissue Levels

    No full text
    2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine, ATR) is a toxicologically important and widely used herbicide. Recent studies have shown that it can elicit neurological, immunological, developmental, and biochemical alterations in several model organisms, including in mice. Because disposition data in mice are lacking, we evaluated ATR's metabolism and tissue dosimetry after single oral exposures (5–250 mg/kg) in C57BL/6 mice using liquid chromatography/mass spectrometry (Ross and Filipov, 2006). ATR was metabolized and cleared rapidly; didealkyl ATR (DACT) was the major metabolite detected in urine, plasma, and tissues. Plasma ATR peaked at 1 h postdosing and rapidly declined, whereas DACT peaked at 2 h and slowly declined. Most ATR and metabolite residues were excreted within the first 24 h. However, substantial amounts of DACT were still present in 25- to 48-h and 49- to 72-h urine. ATR reached maximal brain levels (0.06–1.5 ÎŒM) at 4 h (5–125 mg/kg) and 1 h (250 mg/kg) after dosing, but levels quickly declined to <0.1 ÎŒM by 12 h in all the groups. In contrast, strikingly high concentrations of DACT (1.5–50 ÎŒM), which are comparable with liver DACT levels, were detectable in brain at 2 h. Brain DACT levels slowly declined, paralleling the kinetics of plasma DACT. Our findings suggest that in mice ATR is widely distributed and extensively metabolized and that DACT is a major metabolite detected in the brain at high levels and is ultimately excreted in urine. Our study provides a starting point for the establishment of models that link target tissue dose to biological effects caused by ATR and its in vivo metabolites

    Evaluation of delayed LNFPIII treatment initiation protocol on improving long-term behavioral and neuroinflammatory pathology in a mouse model of Gulf War Illness

    No full text
    Chemical overexposures and war-related stress during the 1990-1991 Gulf War (GW) are implicated in the persisting pathological symptoms that many GW veterans continue to endure. These symptoms culminate into a disease known as Gulf War Illness (GWI) and affect about a third of the GW veteran population. Currently, comprehensive effective GWI treatment options are unavailable. Here, an established GWI mouse model was utilized to explore the (1) long-term behavioral and neuroinflammatory effects of deployment-related GWI chemicals exposure and (2) ability of the immunotherapeutic lacto-N-fucopentaose III (LNFPIII) to improve deficits when given months after the end of exposure. Male C57BL6/J mice (8-9 weeks old) were administered pyridostigmine bromide (PB) and DEET for 14 days along with corticosterone (CORT; latter 7 days) to emulate wartime stress. On day 15, a single injection of the nerve agent surrogate diisopropylfluorophosphate (DFP) was given. LNFPIII treatment began 7 months post GWI chemicals exposure and continued until study completion. A battery of behavioral tests for assessment of cognition/memory, mood, and motor function in rodents was performed beginning 8 months after exposure termination and was then followed by immunohistochemcal evaluation of neuroinflammation and neurogenesis. Within tests of motor function, prior GWI chemical exposure led to hyperactivity, impaired sensorimotor function, and altered gait. LNFPIII attenuated these motor-related deficits and improved overall grip strength. GWI mice also exhibited more anxiety-like behavior that was reduced by LNFPIII; this was test-specific. Short-term, but not long-term memory, was impaired by prior GWI exposure; LNFPIII improved this measure. In the brains of GWI mice, but not in mice treated with LNFPIII, glial activation was increased. Overall, it appears that months after exposure to GWI chemicals, behavioral deficits and neuroinflammation are present. Many of these deficits were attenuated by LNFPIII when treatment began long after GWI chemical exposure termination, highlighting its therapeutic potential for veterans with GWI

    Assessing the Beneficial Effects of the Immunomodulatory Glycan LNFPIII on Gut Microbiota and Health in a Mouse Model of Gulf War Illness

    No full text
    The microbiota’s influence on host (patho) physiology has gained interest in the context of Gulf War Illness (GWI), a chronic disorder featuring dysregulation of the gut–brain–immune axis. This study examined short- and long-term effects of GWI-related chemicals on gut health and fecal microbiota and the potential benefits of Lacto-N-fucopentaose-III (LNFPIII) treatment in a GWI model. Male C57BL/6J mice were administered pyridostigmine bromide (PB; 0.7 mg/kg) and permethrin (PM; 200 mg/kg) for 10 days with concurrent LNFPIII treatment (35 ÎŒg/mouse) in a short-term study (12 days total) and delayed LNFPIII treatment (2×/week) beginning 4 months after 10 days of PB/PM exposure in a long-term study (9 months total). Fecal 16S rRNA sequencing was performed on all samples post-LNFPIII treatment to assess microbiota effects of GWI chemicals and acute/delayed LNFPIII administration. Although PB/PM did not affect species composition on a global scale, it affected specific taxa in both short- and long-term settings. PB/PM elicited more prominent long-term effects, notably, on the abundances of bacteria belonging to Lachnospiraceae and Ruminococcaceae families and the genus Allobaculum. LNFPIII improved a marker of gut health (i.e., decreased lipocalin-2) independent of GWI and, importantly, increased butyrate producers (e.g., Butyricoccus, Ruminococcous) in PB/PM-treated mice, indicating a positive selection pressure for these bacteria. Multiple operational taxonomic units correlated with aberrant behavior and lipocalin-2 in PB/PM samples; LNFPIII was modulatory. Overall, significant and lasting GWI effects occurred on specific microbiota and LNFPIII treatment was beneficial

    Hall Effect Anisotropy in the Paramagnetic Phase of Ho<sub>0.8</sub>Lu<sub>0.2</sub>B<sub>12</sub> Induced by Dynamic Charge Stripes

    No full text
    A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn–Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures 1.9–300 K in magnetic fields up to 80 kOe. Four mono-domain single crystals of Ho0.8Lu0.2B12 samples with different crystal axis orientation were investigated in order to establish the singularities of Hall effect, which develop due to (i) the electronic phase separation (stripes) and (ii) formation of the disordered cage-glass state below T*~60 K. It was demonstrated that a considerable intrinsic anisotropic positive component ρanxy appears at low temperatures in addition to the ordinary negative Hall resistivity contribution in magnetic fields above 40 kOe applied along the [001] and [110] axes. A relation between anomalous components of the resistivity tensor ρanxy~ρanxx1.7 was found for H||[001] below T*~60 K, and a power law ρanxy~ρanxx0.83 for the orientation H||[110] at temperatures T S~15 K. It is argued that below characteristic temperature TS~15 K the anomalous odd ρanxy(T) and even ρanxx(T) parts of the resistivity tensor may be interpreted in terms of formation of long chains in the filamentary structure of fluctuating charges (stripes). We assume that these ρanxy(H||[001]) and ρanxy(H||[110]) components represent the intrinsic (Berry phase contribution) and extrinsic (skew scattering) mechanism, respectively. Apart from them, an additional ferromagnetic contribution to both isotropic and anisotropic components in the Hall signal was registered and attributed to the effect of magnetic polarization of 5d states (ferromagnetic nano-domains) in the conduction band of Ho0.8Lu0.2B12
    corecore