54 research outputs found
Regucalcin ameliorates doxorubicin-induced cytotoxicity in Cos-7 kidney cells and translocates from the nucleus to the mitochondria.
From Europe PMC via Jisc Publications RouterHistory: ppub 2022-01-01Publication status: PublishedDoxorubicin (DOX) is a potent anticancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 h over a range of concentrations, and the LC50 was determined to be 7 µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 h, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically induced cell stress
Polydopamine Linking Substrate for AMPs: Characterisation and Stability on Ti6Al4V
Infections are common complications in joint replacement surgeries. Eradicated infections can lead to implant failure. In this paper, analogues of the peptide KR-12 derived from the human cathelicidin LL-37 were designed, synthesised, and characterised. The designed antimicrobial peptides (AMPs) were attached to the surface of a titanium alloy, Ti6Al4V, by conjugation to a polydopamine linking substrate. The topography of the polydopamine coating was evaluated by electron microscopy and coating thickness measurements were performed with ellipsometry and Atomic Force Microscopy (AFM). The subsequently attached peptide stability was investigated with release profile studies in simulated body fluid, using both fluorescence imaging and High-Performance Liquid Chromatography (HPLC). Finally, the hydrophobicity of the coating was characterised by water contact angle measurements. The designed AMPs were shown to provide long-term bonding to the polydopamine-coated Ti6Al4V surfaces
Near infra-red luminescent osmium labelled gold nanoparticles for cellular imaging and singlet oxygen generation
Osmium(ii) complexes have attractive properties for potential theranostic agents given their anticancer activitiy, their redox potentials favourable for biological transformations within cancer cells and their luminescence in the near infrared (NIR) region. To achieve localised detection and delivery, gold nanoparticles (AuNP) provide an attractive scaffold to attach multiple luminescent agents on a single particle and provide a multimodal platform for detection and loaclaised delivery. We have developed 13 nm and 25 nm AuNP decorated with an osmium complex based on 1,10-phenantholine and surface active bipyridine ligands, OsPhenSS for live cell imaging and singlet oxygen generation, notated as OsPhenSS·AuNP13 and OsPhenSS·AuNP25. The AuNP designs not only allow versatile modalities for localisation of the probe but also water solubility for the osmium metal complex. The osmium decorated nanoparticles OsPhenSS·AuNP13 and OsPhenSS·AuNP25 display characteristic NIR luminescence from the osmium(ii) 3MLCT at 785 nm in aqueous solutions with visible excitation. Upon incubation of the nanoparticles in lung cancer and breast carcinoma the luminescence signature of osmium and the gold reflectance reveal localisation in the cytoplasmic and perinuclear compartments. Excitation of the nanoparticles at 552 nm in the presence of a ROS indicator revealed a marked increase in the green fluorescence from the indicator, consistent with photo-induced ROS generation. The detection of singlet oxygen by time-resolved luminescence studies of the osmium and the nanoparticle probes further demonstrates the dual activity of the osmium-based nanoprobes for imaging and therapy. The introduction of gold nanoparticles for carrying osmium imaging probes allows a novel versatile strategy combining detection and localised therapies at the nanoscale
Tailoring iridium luminescence and gold nanoparticle size for imaging of microvascular blood flow
Aim: Imaging of blood flow in narrow channels and close to vessel walls is important in cardiovascular research for understanding pathogenesis. Our aim was to provide novel nanoprobes with visible emission and long lifetimes as trackers of flow. Materials & methods: Gold nanoparticles coated with an iridium complex were prepared. Luminescence imaging was used to monitor their flows in different hematocrit blood and in murine tissues. Results: The velocities are independent of hematocrit level and the nanoparticles entering blood circulation can be clearly detected in vessels in lungs, mesentery and the skeletal muscle. Conclusion: The work introduces for the first time iridium-based yellow-green luminescence with nanoparticle size of 100 nm for visualizing and monitoring flows with much higher resolution than conventional alternatives
- …