56 research outputs found

    Pulmonary blastoma: a comprehensive overview of a rare entity

    Get PDF
    Introduction: Pulmonary blastoma is a rare malignancy, accounting for less than 0.5% of primary lung tumors. It belongs to the group of pulmonary sarcomatoid carcinomas, and it is typically characterized by a biphasic pattern of an epithelial and a mesenchymal component. Only a few hundred cases have been reported worldwide. The aim of this study is to review and critically assess the literature regarding pulmonary blastoma.Material and methods: A narrative literature review of PubMed database from the inception of the database up to January 2021, limited to the English language, was conducted, using combinations of the following keywords: “pulmonary blastoma”, “biphasic pulmonary blastoma”, “sarcomatoid carcinoma”.Results: Pulmonary blastoma is composed of an epithelial and a mesenchymal malignant component. Regarding pathogenesis, the origin of the biphasic cell population remains elusive. Characteristic immunohistochemical stains are supportive of diagnosis.Clinically, the symptomatology is non-specific, while 40% of the cases are asymptomatic. It is diagnosed at a younger agecompared to other types of lung cancer, and it is often non-metastatic at diagnosis allowing for surgical treatment. Data on management and survival are scarce and mainly come from isolated cases. Advances on targeted therapy may provide novel treatment options. Given the rarity of the cases, multicenter collaboration is needed in order to establish therapeutic guidelines

    dReDBox: A Disaggregated Architectural Perspective for Data Centers

    Get PDF
    Data centers are currently constructed with fixed blocks (blades); the hard boundaries of this approach lead to suboptimal utilization of resources and increased energy requirements. The dReDBox (disaggregated Recursive Datacenter in a Box) project addresses the problem of fixed resource proportionality in next-generation, low-power data centers by proposing a paradigm shift toward finer resource allocation granularity, where the unit is the function block rather than the mainboard tray. This introduces various challenges at the system design level, requiring elastic hardware architectures, efficient software support and management, and programmable interconnect. Memory and hardware accelerators can be dynamically assigned to processing units to boost application performance, while high-speed, low-latency electrical and optical interconnect is a prerequisite for realizing the concept of data center disaggregation. This chapter presents the dReDBox hardware architecture and discusses design aspects of the software infrastructure for resource allocation and management. Furthermore, initial simulation and evaluation results for accessing remote, disaggregated memory are presented, employing benchmarks from the Splash-3 and the CloudSuite benchmark suites.This work was supported in part by EU H2020 ICT project dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    A randomized phase III study of the docetaxel/carboplatin combination versus docetaxel single-agent as second line treatment for patients with advanced/metastatic Non-Small Cell Lung Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the activity and toxicity of docetaxel/carboplatin (DC) doublet vs single agent docetaxel (D) as second-line treatment in patients with advanced non-small cell lung cancer (NSCLC).</p> <p>Methods</p> <p>Patients pre-treated with front-line platinum-free regimens, were randomized to receive either docetaxel/carboplatin (DC), (docetaxel 50 mg/m<sup>2</sup>; carboplatin AUC4; both drugs administered on days 1 and 15) or docetaxel single-agent (D), (docetaxel 50 mg/m<sup>2 </sup>on days 1 and 15).</p> <p>Results</p> <p>Response rate was similar between the two arms (DC vs D: 10.4% vs 7.7%; p = 0.764). After a median follow-up time of 28.0 months for DC arm and 34.5 months for D arm, progression free survival (PFS) was significantly higher in the DC arm (DC vs D:3.33 months vs 2.60 months; p-value = 0.012), while no significant difference was observed in terms of overall survival (OS) (DC vs D: 10.3 months vs 7.70 months; p-value = 0.550). Chemotherapy was well-tolerated and grade III/IV toxicities were relatively infrequent. No toxic deaths were observed.</p> <p>Conclusions</p> <p>This study has not achieved its primary objective of significant OS prolongation with docetaxel/carboplatin combination over single-agent docetaxel in patients who had not received front-line docetaxel; however, the docetaxel/carboplatin combination was associated with a significant clinical benefit in terms of PFS.</p

    Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations–State-of-the-Art.

    Get PDF
    Cancer and COVID-19 are both well-established risk factors predisposing to thrombosis. Both disease entities are correlated with increased incidence of venous thrombotic events through multifaceted pathogenic mechanisms involving the interaction of cancer cells or SARS-CoV2 on the one hand and the coagulation system and endothelial cells on the other hand. Thromboprophylaxis is recommended for hospitalized patients with active cancer and high-risk outpatients with cancer receiving anticancer treatment. Universal thromboprophylaxis with a high prophylactic dose of low molecular weight heparins (LMWH) or therapeutic dose in select patients, is currentlyindicated for hospitalized patients with COVID-19. Also, prophylactic anticoagulation is recommended for outpatients with COVID-19 at high risk for thrombosis or disease worsening. However, whether there is an additive risk of thrombosis when a patient with cancer is infected with SARS-CoV2 remains unclear In the current review, we summarize and critically discuss the literature regarding the epidemiology of thrombotic events in patients with cancer and concomitant COVID-19, the thrombotic risk assessment, and the recommendations on thromboprophylaxis for this subgroup of patients. Current data do not support an additive thrombotic risk for patients with cancer and COVID-19. Of note, patients with cancer have less access to intensive care unit care, a setting associated with high thrombotic risk. Based on current evidence, patients with cancer and COVID-19 should be assessed with well-established risk assessment models for medically ill patients and receive thromboprophylaxis, preferentially with LMWH, according to existing recommendations. Prospective trials on well-characterized populations do not exist

    Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A Consensus Statement Based on Available Clinical Trials.

    Get PDF
    Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients

    Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial

    Get PDF
    BACKGROUND: Passive immunotherapy using hyperimmune intravenous immunoglobulin (hIVIG) to SARS-CoV-2, derived from recovered donors, is a potential rapidly available, specific therapy for an outbreak infection such as SARS-CoV-2. Findings from randomised clinical trials of hIVIG for the treatment of COVID-19 are limited. METHODS: In this international randomised, double-blind, placebo-controlled trial, hospitalised patients with COVID-19 who had been symptomatic for up to 12 days and did not have acute end-organ failure were randomly assigned (1:1) to receive either hIVIG or an equivalent volume of saline as placebo, in addition to remdesivir, when not contraindicated, and other standard clinical care. Randomisation was stratified by site pharmacy; schedules were prepared using a mass-weighted urn design. Infusions were prepared and masked by trial pharmacists; all other investigators, research staff, and trial participants were masked to group allocation. Follow-up was for 28 days. The primary outcome was measured at day 7 by a seven-category ordinal endpoint that considered pulmonary status and extrapulmonary complications and ranged from no limiting symptoms to death. Deaths and adverse events, including organ failure and serious infections, were used to define composite safety outcomes at days 7 and 28. Prespecified subgroup analyses were carried out for efficacy and safety outcomes by duration of symptoms, the presence of anti-spike neutralising antibodies, and other baseline factors. Analyses were done on a modified intention-to-treat (mITT) population, which included all randomly assigned participants who met eligibility criteria and received all or part of the assigned study product infusion. This study is registered with ClinicalTrials.gov, NCT04546581. FINDINGS: From Oct 8, 2020, to Feb 10, 2021, 593 participants (n=301 hIVIG, n=292 placebo) were enrolled at 63 sites in 11 countries; 579 patients were included in the mITT analysis. Compared with placebo, the hIVIG group did not have significantly greater odds of a more favourable outcome at day 7; the adjusted OR was 1·06 (95% CI 0·77–1·45; p=0·72). Infusions were well tolerated, although infusion reactions were more common in the hIVIG group (18·6% vs 9·5% for placebo; p=0·002). The percentage with the composite safety outcome at day 7 was similar for the hIVIG (24%) and placebo groups (25%; OR 0·98, 95% CI 0·66–1·46; p=0·91). The ORs for the day 7 ordinal outcome did not vary for subgroups considered, but there was evidence of heterogeneity of the treatment effect for the day 7 composite safety outcome: risk was greater for hIVIG compared with placebo for patients who were antibody positive (OR 2·21, 95% CI 1·14–4·29); for patients who were antibody negative, the OR was 0·51 (0·29–0·90; pinteraction=0·001). INTERPRETATION: When administered with standard of care including remdesivir, SARS-CoV-2 hIVIG did not demonstrate efficacy among patients hospitalised with COVID-19 without end-organ failure. The safety of hIVIG might vary by the presence of endogenous neutralising antibodies at entry. FUNDING: US National Institutes of Health

    Osimertinib Resistance: Molecular Mechanisms and Emerging Treatment Options

    No full text
    The development of tyrosine kinase inhibitors (TKIs) targeting the mutant epidermal growth factor receptor (EGFR) protein initiated the success story of targeted therapies in non-small-cell lung cancer (NSCLC). Osimertinib, a third-generation EGFR-TKI, is currently indicated as first-line therapy in patients with NSCLC with sensitizing EGFR mutations, as second-line therapy in patients who present the resistance-associated mutation T790M after treatment with previous EGFR-TKIs, and as adjuvant therapy for patients with early stage resected NSCLC, harboring EGFR mutations. Despite durable responses in patients with advanced NSCLC, resistance to osimertinib, similar to other targeted therapies, inevitably develops. Understanding the mechanisms of resistance, including both EGFR-dependent and -independent molecular pathways, as well as their therapeutic potential, represents an unmet need in thoracic oncology. Interestingly, differential resistance mechanisms develop when osimertinib is administered in a first-line versus second-line setting, indicating the importance of selection pressure and clonal evolution of tumor cells. Standard therapeutic approaches after progression to osimertinib include other targeted therapies, when a targetable genetic alteration is detected, and cytotoxic chemotherapy with or without antiangiogenic and immunotherapeutic agents. Deciphering the when and how to use immunotherapeutic agents in EGFR-positive NSCLC is a current challenge in clinical lung cancer research. Emerging treatment options after progression to osimertinib involve combinations of different therapeutic approaches and novel EGFR-TKI inhibitors. Research should also be focused on the standardization of liquid biopsies in order to facilitate the monitoring of molecular alterations after progression to osimertinib
    • …
    corecore