
dReDBox: a Disaggregated Architectural
Perspective for Data Centers

Nikolaos Alachiotis1,2, Andreas Andronikakis2, Orion Papadakis2,
Dimitris Theodoropoulos1,2, Dionisios Pnevmatikatos1,2, Dimitris Syrivelis3,

Andrea Reale3, Kostas Katrinis3, George Zervas4, Vaibhawa Mishra4,
Hui Yuan4, Ilias Syrigos5, Ioannis Igoumenos5, Thanasis Korakis5,

Marti Torrents6, and Ferad Zyulkyarov6

1 Foundation for Research and Technology - Hellas
2 Technical University of Crete - Greece

3 IBM Research - Ireland
4 University College London

5 University of Thessaly
6 Barcelona Supercomputing Center

Abstract. Data centers are currently constructed with fixed blocks (blades);
the hard boundaries of this approach lead to suboptimal utilization of re-
sources and increased energy requirements. The dReDBox (disaggregated
Recursive Datacenter in a Box) project addresses the problem of fixed
resource proportionality in next-generation, low-power data centers by
proposing a paradigm shift toward finer resource allocation granularity,
where the unit is the function block rather than the mainboard tray. This
introduces various challenges at the system design level, requiring elas-
tic hardware architectures, efficient software support and management,
and programmable interconnect. Memory and hardware accelerators can
be dynamically assigned to processing units to boost application perfor-
mance, while high-speed, low-latency electrical and optical interconnect
is a prerequisite for realizing the concept of data center disaggregation.
This chapter presents the dReDBox hardware architecture and discusses
design aspects of the software infrastructure for resource allocation and
management. Furthermore, initial simulation and evaluation results for
accessing remote, disaggregated memory are presented, employing bench-
marks from the Splash-3 and the CloudSuite benchmark suites.

1 Introduction

Data centers have been traditionally defined by the physical infrastructure, im-
posing a fixed ratio of resources throughout the system. A widely adopted design
paradigm assumes the mainboard tray, along with its hardware components, as
the basic building block, requiring the system software, the middleware, and the
application stack to treat it as a monolithic component of the physical system.
The proportionality of resources per mainboard tray, however, which is set at
design time, remains fixed throughout the life time of a data center, imposing var-
ious limitations to the overall data center architecture. First, the proportionality

This is a post-peer-review, pre-copyedit version of an article published in Hardware Accelerators in Data Centers. The final authenticated version is
available online at: https://link.springer.com/chapter/10.1007/978-3-319-92792-3_3

2 Authors Suppressed Due to Excessive Length
Barriers in datacenter resource utilization

4

•VM4: 4 MEM Units, 3 vCore (NO
FIT)

Memory Utilization: 66%
CPU Utilization: 50%

M
E
M

C
P
U

M
E
M

C
P
U

M
E
M

C
P
U

M
E
M

C
P
U

M
E
M

C
P
U

M
E
M

C
P
U

Server-1 Server-2 Server-3

M
E
M

M
E
M

M
E
M

C
P
U

C
P
U

C
P
U

• VM1: 3 MEM Units, 1 CPU
• VM2: 2 MEM Units, 1 CPU
• VM3: 3 MEM Units, 1 CPU
• VM4: 4 MEM Units, 3 CPU

F
R
A
G
M
E
N
T
E
D

D
IS
A
G
G
R
E
G
A
T
E
D

•VM4: 4 MEM Units, 3 vCore (FIT)
Memory Utilization: 100%
CPU Utilization: 100%

(a)

(b)

Fig. 1. A limitation of current data center infrastructures regarding resource utilization
(a), and the respective resource allocation scheme of dReDBox (b).

of resources at system level inevitably follows the fixed resource proportionality
of the mainboard tray. With the mainboard tray as the basic, monolithic build-
ing block, system-level upgrades to facilitate increased resource requirements for
additional memory, for instance, bring along parasitic capital and operational
overheads that are caused by the rest of the hardware components on a tray, e.g.,
processors and peripherals. Second, the process of assigning/allocating resources
to Virtual Machines (VMs) is significantly restricted by the physical boundaries
of the mainboard tray, with respect to resource quantities. Such lack of flexi-
bility in allocating resources to VMs eventually brings the overall system to a
state of stranded resource capacity, while yielding the data center insufficient to
facilitate the requirements of additional VMs. Third, technology upgrades need
to be carried out on a per-server basis, raising significantly the costs when ap-
plied at scale, e.g., in an internet-scale data center that can potentially comprise
thousands of servers.

However, as current data center systems are composed by a networked col-
lection of monolithic building blocks, shifting toward an architectural paradigm
that overcomes the aforementioned fixed proportionality of resources by break-
ing the boundaries of the motherboard tray to achieve finer granularity in re-
source allocation to VMs entails various challenges and open problems to address.
The challenges and requirements broadly relate to four categories, namely the
hardware platform, the memory, the network, and the system software. A rep-
resentative hardware-platform-level requirement, for instance, entails the need
to establish intra- and inter-tray interconnection paths that are programmable,
yet introduce minimal communication overhead. For this purpose, a low-latency
network architecture that is scalable and achieves high bandwidth is needed. Re-
mote memory allocation support and management is required, as well as efficient
ways to maintain coherency and consistency, while minimizing remote-memory
access latency. Dedicated mechanisms to support dynamic on-demand network

dReDBox: a Disaggregated Architectural Perspective for Data Centers 3

connectivity and scalability, as well as orchestration software tools that define
resource topologies, generate and manage VMs, and ensure reliability and cor-
rectness while exploring optimizations, are prerequisites for the success of the
overall approach. Fine-grained power management at the component-level is re-
quired in order to minimize overall data center energy consumption.

To this end, the dReDBox (disaggregated Recursive Datacenter in a Box)
project aims at overcoming the issue of fixed resource proportionality in next
generation, low-power data centers by departing from the mainboard-as-a-unit
paradigm and enabling disaggregation through the concept of function-block-as-
a-unit. The following section (Section 2) provides an overview of existing data
center architectures and related projects, and presents the dReDBox approach to
data center architecture design. The remaining sections are organized as follows.
Sections 3 and 4 present the system architecture and the software infrastructure,
respectively. Section 5 describes a custom simulation environment for disaggre-
gated memory and present a performance evaluation. Finally, Section 6 concludes
this chapter.

2 Disaggregation and the dReDBox Perspective

The concept of data center disaggregation regards resources as independent ho-
mogeneous pools of functionalities across multiple nodes. The increasingly recog-
nized benefits of this design paradigm have motivated various vendors to adopt
the concept, and significant research efforts are currently conducted toward that
direction, both industrial and academic ones.

From a storage perspective, disaggregation of data raises a question regard-
ing where should data reside, at the geographical level, to achieve short retrieval
times observed by the end users, data protection, disaster recovery and resiliency,
as well as to ensure that mission-critical criteria are met at all times. Various in-
dustrial vendors provide disaggregated solutions for that purpose, enabling flash
capacity disaggregation across nodes, for instance, or the flexible deployment and
management of independent resource pools. Klimovic et al. [1] examine disaggre-
gation of PCIe-based flash memory as an attempt to overcome overprovisioning
of resources that is caused by the existing inflexibility in deploying data center
nodes. The authors report a 20% drop in application-perceived throughput due
to facilitating remote flash memory accesses over commodity networks, achiev-
ing, however, highly scalable and cost-effective allocation of processing and flash
memory resources.

A multitude of research efforts have focused on disaggregated memory with
the aim to enable scaling of memory and processing resources at independent
growth paces. Lim et al. [2, 3] present the “memory blade” as an architectural
approach to introduce flexibility in memory capacity expansion for an ensemble
of blade servers. The authors explore memory-swapped and block-access solu-
tions for remote access, and address software- and system-level implications by
developing a software-based disaggregated memory prototype based on the Xen

4 Authors Suppressed Due to Excessive Length

hypervisor. They find that mechanisms which minimize the hypervisor overhead
are preferred in order to achieve low-latency remote memory access.

Cheng-Chun Tu et al. [4] present Marlin, a PCIe-based rack area network that
supports communication and resource sharing among disaggregated racks. Com-
munication among nodes is achieved via a fundamental communication primitive
that facilitates direct memory accesses to remote memory at the hardware level,
with PCIe and Ethernet links used for inter-rack and intra-rack communication,
respectively. Dragojevic et al. [5] describe FaRM, a main memory distributed
computing platform that, similarly to Marlin, relies on hardware-support for di-
rect remote memory access in order to reduce latency and increase throughput.

Acceleration resources, e.g., FPGAs, are increasingly being explored to boost
application performance in data center environments. Chen et al.[6] present a
framework that allows FPGA integration into the cloud, along with a prototype
system based on OpenStack, Linux-KVM, and Xilinx FPGAs. The proposed
framework addresses matters of resource abstraction, resource sharing among
threads, interfacing with the underlying hardware, and security of the host envi-
ronment. Similarly, Fahmy [7] describe a framework for accelerator integration in
servers, supporting virtualized resource management and communication. Hard-
ware reconfiguration and data transfers rely on PCIe, while software support
that exposes a low-level API facilitates FPGA programming and management.
Vipin et al. [8] present DyRACT, an FPGA-based compute platform with sup-
port for partial reconfiguration at runtime using a static PCIe interface. The
DyRACT implementation is targeting Virtex 6 and Virtex 7 FPGAs, while a
video-processing application that employs multiple partial bitstreams is used as
a case study for validation and evaluation purposes.

More recently, Microsoft presented the Configurable Cloud architecture [9],
which introduces reconfigurable devices between network switches and servers.
This facilitates the deployment of remote FPGA devices for acceleration pur-
poses, via the concept of a global pool of acceleration resources that can be
employed by remote servers as needed. This approach to disaggregation elimi-
nates the, otherwise, fixed one-to-one ratio between FPGAs and servers, while
the particular FPGA location, between the server and the network switches,
enables the deployment of reconfigurable hardware for infrastructure enhance-
ment purposes, e.g., for encryption and decryption. A prior work by Microsoft,
the Catapult architecture [10], relied on a dedicated network for inter-FPGA
communication, therefore raising cabling costs and management requirements.
Furthermore, efficient communication among FPGAs was restricted to a single
rack, with software intervention required to establish inter-rack data transfers.

EU-funded research efforts, such as the Vineyard [11] and the ECOSCALE [12]
projects, aim at improving performance and energy efficiency of compute plat-
forms by deploying accelerators. The former addresses the problem targeting
data center environments, via the deployment of heterogeneous systems that
rely on data-flow engines and FPGA-based servers, while the latter adopts a
holistic approach toward a heterogeneous hierarchical architecture that deploys

dReDBox: a Disaggregated Architectural Perspective for Data Centers 5

Fig. 2. Example of a memory-intensive application and the respective resource alloca-
tion schemes in a current infrastructure (a) and dReDBox (b).

Fig. 3. Example of a compute-intensive application and the respective resource allo-
cation schemes in a current infrastructure (a) and dReDBox (b).

accelerators, along with a hybrid programming environment based on MPI and
OpenCL.

The dReDBox approach aims at providing a generic data center architecture
for disaggregation of resources of arbitrary types, such as processors, memories,
and FPGA-based accelerators. Basic blocks, dubbed bricks, construct homo-
geneous pools of resources, e.g., a compute pool comprising multiple compute
bricks, with system software and orchestration tools implementing software-
defined virtual machines which exhibit customized amounts of resources that
better serve application needs. High-speed, low-latency optical and electrical
networks will establish inter- and intra-tray communication among bricks, re-
spectively. Figures 2 and 3 illustrate the expected resource allocation schemes,
enabled by the dReDBox infrastructure, for serving the requirements of memory-
and compute-intensive applications, respectively. The following section presents
the proposed dReDBox hardware architecture.

3 System Architecture

This section presents the overall architecture of a dReDBox data center. Mul-
tiple dReDBox racks, interconnected via an appropriate data center network,
form a dReDBox data center. This overall architecture is shown in Figure 4. The

6 Authors Suppressed Due to Excessive Length

dReDBox architecture comprises pluggable compute/memory/accelerator mod-
ules (termed “bricks” in dReDBox terminology) as the minimum field-replaceable
units. A single or sets of multiples of each brick type forms an IT resource pool of
the respective type. A mainboard tray with compatible brick slots and on-board
electrical crossbar switch, flash storage and baseboard management components
is used to support up to 16 bricks. A 2U carrier box (dBOX, visually corre-
sponding from the outside to a conventional, rack-mountable data center server)
in turn hosts the mainboard tray and the intra-tray optical switch modules.

CPU
CPU

MEM

CPU

dROSM

CPU
CPU

MEM

CPU
CPU

MEM

CPU

CPU
CPU

MEM

dBOX

dBOX

dBOX

dBOX

dROSM

dBOX

dBOX

d
R

A
C

K

d
R

A
C

K

dBOX

dBOX

dCOMPUBRICK

dMEMBRICK

dACCELBRICK

CPU

MEM

ACCEL

Optical Circuit
Switch

Electronic
Circuit Switch

Electronic
Packet Switch

Legend

dROSM dROSM

Fig. 4. Overview of a dReDBox rack architecture comprising several dBOXes inter-
connected with hybrid optical and electrical switching (dROSM).

3.1 The dBRICK Architecture

The dBRICK is the smallest realization unit in the dReDBox architecture.
The term encompasses general-purpose processing (dCOMPUBRICK), random-

dReDBox: a Disaggregated Architectural Perspective for Data Centers 7

access memory (dMEMBRICK), and application-specific accelerators (dACCEL-
BRICK). As described above, dBRICKs will be connected to the rest of the sys-
tem by means of a tray that, besides connectivity, will also provide the necessary
power to each brick.

Compute Brick Architecture (dCOMPUBRICK) The dReDBox com-
pute brick (Fig. 5) is the main processing block in the system. It hosts local

Fig. 5. Block diagram of a dCOMPUBRICK. The MPSoC integrates an Application
Processing Unit (APU) for software execution. The on-chip programmable logic on
the SoC is used to host transaction glue logic, housekeeping state, and communication
logic, required for accessing disaggregated resources. The local DMA engines allow the
system software to efficiently migrate pages from remote memory regions to local DDR
memory.

off-chip memory (DDR4) for low-latency and high-bandwidth instruction read
and read/write data access, as well as Ethernet and PCIe ports for data and
system communication and configuration. Also, each dCOMPUBRICK features
QSPI-compatible flash storage (16-32 MB) and a micro-SD card socket (not
shown in Fig. 5) to facilitate reset and reconfiguration of the brick in the case
of disconnection, as well as for debugging purposes.

The compute brick can reach disaggregated resources, such as memory and
accelerators, via dReDBox-specific glue intellectual property (termed “Transac-
tion Glue Logic”) on the datapath and communication endpoints implemented
on the programmable logic of the dCOMPUBRICK MPSoC. System intercon-
nection to disaggregated resources occurs via multiple ports leading to circuit-
switched tray- and rack-level interconnects. As also shown in Figure 5, we also
experiment with packet-level system/data interconnection, using Network Inter-
face (NI) and a brick-level packet switch (also implemented on programmable

8 Authors Suppressed Due to Excessive Length

logic of the dCOMPUBRICK MPSoC), on top of the inherently circuit-based in-
terconnect substrate. There is potential value in such an approach, specifically in
terms of increasing the connectivity of a dCOMPUBRICK due to multi-hopping
and thus creating an opportunity to increase the span of resource pools reachable
from a single dCOMPUBRICK.

Memory Brick Architecture (dMEMBRICK) Figure 6 illustrates the
memory brick (dMEMBRICK) architecture, which is a key disaggregation fea-
ture of dReDBox. It will be used to provide a large and flexible pool of mem-
ory resources which can be partitioned and (re)distributed among all processing
nodes (and corresponding VMs) in the system. dMEMBRICKs can support mul-
tiple links. These links can be used to provide higher aggregate bandwidth, or can
be partitioned by the orchestrator and assigned to different dCOMPUBRICKs,
depending on the resource allocation policy used. This functionality can be used
in two ways. First, the nodes can share the memory space of the dMEMBRICK,
implementing essentially a shared memory block (albeit shared among a lim-
ited number of nodes). Second, the orchestrator can also partition the memory
of the dMEMBRICK, creating private “partitions” for each client. This func-
tionality allows for fine-grained memory allocation. It also requires translation
and protection support in the glue logic (transaction glue logic block) of the
dMEMBRICK.

Fig. 6. dMEMBRICK architecture featuring the Xilinx Zynq Ultrascale+ MPSoC (EG
version); the local switch forwards system/application data to the memory brick glue
logic, which interfaces different memory module technologies.

The glue logic implements memory translation interfaces with the requesting
dCOMPUBRICKs, both of which are coordinated by the orchestrator software.
Besides network encapsulation, the memory translator, managed by orchestrator
tools, controls the possible sharing of the memory space among multiple dCOM-
PUBRICKs, enabling support for both sharing among and protection between
dCOMPUBRICKs. The control registers allow the local mapping of external
requests to local addresses to allow more flexible mapping and allocation of
memory.

dReDBox: a Disaggregated Architectural Perspective for Data Centers 9

Acceleration Brick Architecture (dACCELBRICK) A dACCELBRICK
hosts accelerator modules that can be used to boost application performance
based on a near-data processing scheme [13]; instead of transmitting data to
remote dCOMPUBRICKs, certain calculations can be performed by local accel-
erators, thus improving performance while reducing network utilization.

Fig. 7. The dACCELBRICK architecture for accommodating application-specific ac-
celerators.

Figure 7 depicts the dACCELBRICK architecture. The dACCELBRICK
consists of the dynamic and the static infrastructure. The dynamic infrastructure
consists of a predefined, reconfigurable slot in the PL that hosts hardware ac-
celerators. As depicted in Figure 7, the accelerator wrapper template integrates
a set of registers that can be accessed by the glue logic to monitor and control
(e.g., debug) the accelerator. Moreover, the wrapper provides a set of high-speed
transceivers (e.g., GTHs) for direct communication between the accelerator and
other external resources. Finally, an AXI-compatible port interfaces directly with
an AXI DDR controller, allowing the hardware accelerator to utilize the local
PL DDR memory during data processing. The static infrastructure hosts all
required modules for (a) supporting dynamic hardware reconfiguration, (b) in-
terfacing with the hardware accelerator, and (c) establishing communication
with remote dCOMPUBRICKs. To support hardware reconfiguration, in the
current implementation, the local APU executes a “thin” middleware respon-
sible for (a) receiving bitstreams from remote dCOMPUBRICKs (through the
accelerator brick glue logic), (b) storing bitstreams in the APU DDR memory,
and (c) reconfiguring the PL with the required hardware IP via the PCAP port.
To monitor/control the hardware accelerator, the glue logic can read/write the
wrapper registers. In addition, the glue logic interfaces with the local NI/switch
for data transfers between the dACCELBRICK and remote dCOMPUBRICKs.

10 Authors Suppressed Due to Excessive Length

3.2 The dTRAY Architecture

dTRAYs may be composed of arbitrary combinations of the three different types
of dBRICKs detailed above. A dTRAY will have standard 2U size and may con-
tain up to 16 bricks. It is expected that the number of dMEMBRICKs will
be larger than the number of dCOMPUBRICKs and dACCELBRICKs, since a
dCOMPUBRICK is expected to access multiple dMEMBRICKs. The different
dBRICKs are interconnected among each other within the dTRAY and also with
other dBRICKs from different dTRAYs. Figure 8 illustrates the dTRAY archi-
tecture. Four different networks, a low-latency high-speed electrical network, an
Ethernet network, a low-latency high-speed optical network, and a PCIe net-
work, will provide connectivity between the different bricks. Accessing remote
memory will use both optical and electrical low-latency, high-speed networks.
Accesses to remote memory placed in a dMEMBRICK within a dTRAY will
be implemented via an electrical circuit crossbar switch (dBESM in Figure 4 is
labeled as High Speed Electrical Switch) and will connect directly to the GTH
interface ports available on the programmable logic of the bricks. The dBESM
switch will have 160 ports. This is the largest dBESM switch available on the
market today supporting our speed requirements. The latency will be as low as
0.5ns and the bandwidth per port will be 12Gbps. This network will be used for
intra-tray memory traffic between different bricks inside the tray. dBESM will
not be used for inter-tray memory traffic due the limitations of the electrical com-
munication in larger distances (latency). In addition, using electrical network for
intra-tray communication instead of an optical network would not require signal
conversion from electrical to optical and vice versa and thus it will be lower
latency and lower power consumption. The optical network on the dTRAY, pro-
viding inter-tray connectivity, will be implemented with multiple optical switch
modules (dBOSM in dReDBox terminology). Each dBOSM switch will have 24
optical ports. The latency of the dBOSM optical switch would be around 5ns
and the bandwidth would be in the range of 384Gbps. dBRICKs will connect to
the dBOSM via GTH interface ports available on the programmable logic of the
SoC. The GTH bandwidth is 16Gbps. A total of 24 GTH ports will be available
in the SoC, with 8 of them used to connect the SoC to the dBOSM. On a fully
populated tray hosting 16 bricks, a maximum of 256 optical ports may be used
to fully interconnect the bricks of each tray. A Mid-Board Optics (MBO) device
mounted on each dBRICK will be used to convert the electrical signals coming
from the GTH ports and aggregate them into a single fibre ribbon; the other
end of the ribbon will be attached to a local dBOX’s dBOSM optical switch.
Each MBO supports up to eight ports. The dBRICKs will use 10 GTH ports to
connect to dBOSM. The number of GTH’s per SoC connecting to the dBOSM
is limited by the size of the dBOSM. A 160-port dBOSM can support a maxi-
mum of 10 GTH per dBRICK, given a maximum of 16 dBRICKs on a tray. An
Ethernet (ETH) network will be used for regular network communication and
board management communication (BMC). The bandwidth will be 1Gbps and
it will have a hierarchical topology. Bricks on the same tray will interconnect via
a PCIe interface. Inter-brick interconnection between bricks on different trays

dReDBox: a Disaggregated Architectural Perspective for Data Centers 11

Fig. 8. Sample tray architecture with multiple bricks interconnected through optical
and electrical interconnection networks.

within the same rack will be provided via a PCIe switch, which will exit the tray
with one or more PCIe cable connectors. The PCIe interface will be used for
signalling and interrupts, as well as for attachment to remote peripherals. This
network can also be used to (re)configure the FPGAs in each SoC.

3.3 The dRACK Architecture

Figure 4 introduced the high-level dRACK architecture of the dReDBox archi-
tecture. Multiple dTRAYs of different configurations can be placed in the same
dRACK. These dTRAYs can feature different proportions of Compute, Memory,
and Accelerators. dRACKs are organized into dCLUSTs due to a restriction that
the largest dROSM (rack switch) will not be able to interconnect all the optical
links from the dTRAYs, as well as for facilitating management.

12 Authors Suppressed Due to Excessive Length

dMEMBRICK/dACCELBRICK

B
A
N
K
S

Legend

HW Interface

SW Interface

PS

PL
dTRAY dBOX

PL

dCOMPUBRICK

D
D
R
C

SDM
Agent

IaaS Scheduler
(Openstack Nova)

Software
Defined Mem.

Controller

MGMT Node(s)

S1
1

User Layer Platform Management Layer

Operating System Layer

Memory & Interconnect Layer

dESM

cfg cfg

dROSM

dReDBox Layer
SW/Programmable

Component

HW Component

S9S1
0

Nova
Compute

dBMC
Controller

G
L
U
E

H
1

S
W
I
T
C
H

S15 S7

S16

S1

H5

H
4 Glue

Logic
Switch

H6

dBOSM

cfg

Memory
Driver

Hyperv.
Driver

PCIe
Switch

dReDBox
User

Infrastructure
Owner

«uses interface»

cfg

S13

Apps
(VMs)

S6

S8

Fig. 9. The three dReDBox layers for software support. The user layer provides the end-
user interface. The resource management layer enables management and monitoring
of resources. The operating system layer on the compute bricks provides hypervisor
support to manage virtual machines.

4 Software Infrastructure

In this section, the overall software architecture and interactions between the
software components, enabling the disaggregated nature of the dReDBox plat-
form, are presented. Software deployment expands to various parts of the system
and thus a hierarchical design is necessary in order to reduce complexity and fa-
cilitate implementation. Figure 9 shows the division of software components into
three layers that range from the interaction with the user and the handling of
virtual machine deployment requests, to platform management, to interconnec-
tion paths synthesis and, eventually, to the necessary extensions of the operating
system that enable support for remote memory access.

4.1 User Layer

This is the layer that serves as the interface between the end user and the
system, allowing to reserve virtualized resources and to deploy virtual machines.
In addition, it allows the system administrator to register hardware components
and monitor them via a graphical user interface.

IaaS Scheduler dReDBox takes advantage of OpenStack [14], the de facto
standard cloud operating system, for providing an Infrastructure-as-a-Service

dReDBox: a Disaggregated Architectural Perspective for Data Centers 13

platform to provision and manage virtual resources. However, various exten-
sions are required in order to comply with the disaggregated architecture of the
dReDBox platform.

OpenStack, through its Compute service, Nova [15], employs the scheduler
to select the most qualified host in terms of user requirements for compute and
memory capacity. This is achieved by filtering and assigning weights to the list of
available hosts. In traditional cloud computing systems, resources are provided
only by the compute nodes (hosts) and, as a result, scheduling decisions and
resource monitoring are limited by this restriction. To take full advantage of dis-
aggregated resources, e.g., memory and accelerators, we modify Nova Scheduler
by implementing a communication point with the resource management layer,
described below, through a REST API. We, thus, intersect the workflow of vir-
tual machine scheduling and retrieve a suitable compute node for the deployment
of a user’s virtual machine in order to maximize node’s utilization. Furthermore,
in the case that the amount of allocated memory to the host does not satisfy
user requirements, the resource management layer proceeds by allocating addi-
tional remote memory and establishing the required connections between the
bricks. Besides virtual machine scheduling, we extend Openstack’s web user in-
terface, Horizon [16], in order to enable the administrator to monitor compute
bricks, deployed virtual machines, and allocated remote resources. Finally, ad-
ministrators, through this extended interface, can also register new components
(compute bricks, memory modules etc) and the physical connections between
them.

4.2 Resource Management Layer

This is the layer where the management and monitoring of the availability of the
various system resources occurs. More specifically, the current state of memory
and accelerator allocations is preserved along with the dynamic configurations
of the hardware components interconnecting bricks (optical switches, electrical
crossbars, etc).

Software Defined Memory Controller The core entity of the resource man-
agement software is the Software Defined Memory (SDM) Controller. It runs as
a separate and autonomous service, implemented in Python programming lan-
guage and exposes REST APIs for the interaction with both the IaaS Scheduler
and the agents running on compute bricks. Its primary responsibility is to han-
dle allocation requests for both memory and accelerators. Memory requests are
arriving to the REST interface from the IaaS scheduler, which is requesting the
reservation of resources upon the creation of a virtual machine with a pre-defined
set of requirements for vCPU cores and memory size, called “flavor”. The SDM
Controller, then, returns a list of the candidate compute bricks that can satisfy
both compute and memory requirements after the consideration of total memory
availability in the system and connection points on compute bricks (transceiver
ports) and switches (switch ports). Allocation algorithms aiming at improving

14 Authors Suppressed Due to Excessive Length

CPUBrick

Tr

Tr

Pr

Pr

Pr

Pr

Tr

Tr

MemBrick

Switch

Fig. 10. Graph-based resource modeling example for a system that comprises a Com-
puteBrick, a MemoryBrick, two transceivers per brick, and one switching layer. Bricks,
Transceivers and Switch ports are depicted as vertices.

power savings and/or performance, through low latency memory accesses, are
employed to select the most suitable memory brick for remote memory alloca-
tion.

After the selection of the bricks, where the deployment and the memory al-
location will take place, a subsequent component, part of the SDM Controller,
called platform synthesizer, is employed. Its main function is to maintain an
overview of the whole platform hardware deployment and to drive the orches-
tration and the dynamic generation of system interconnect configurations. From
there, these configurations are passed through REST calls to the interfaces man-
aging the electrical crossbars and the optical circuit switches as well as to the
agents running on compute bricks, so that they can configure the programmable
logic and initiate hotplugging of remote memory segments.

Graph Database The representation of resources and interconnection be-
tween them is realized as a directed graph structure implemented in Janus-
Graph [17] distributed graph database. Resources are modeled as vertices, while
the edges between them represent physical connections. Figure 10 illustrates a
simple example. More specifically, compute/memory/accelerator bricks, as well
as transceivers and switch ports are modeled as vertices. We then use directed
edges to connect all the transceivers that are located on a compute brick (acting
as root) to the transceivers located on memory bricks (acting as sinks). This
happens despite the fact that transceivers are bidirectional, but for the sake of
convenience we consider transceivers belonging to compute bricks as logical out-
put and transceivers belonging to memory and accelerator bricks as logical input.
One or more switching layers exist between transceivers on different bricks. At
the first layer, brick (compute/memory/accelerator) transceiver ports are physi-
cally connected either to the ports of the electrical crossbar or to the ports of the
optical circuit switch (dBOSM), both of which are residing on the same dBOX as
the brick. Remaining ports of the dBOSM are physically connected to the next
switching layer which is the rack switch (dROSM). Switch ports of the same

dReDBox: a Disaggregated Architectural Perspective for Data Centers 15

switch are fully interconnected in order to make the establishment of a circuit
between any of the switch ports possible. Traversing the edges of the graph that
originate at a compute brick and finish at memory bricks allows to retrieve the
required paths, i.e., the switch ports that need to be configured for the establish-
ment of the connection between the bricks. After the successful configuration of
the components participating in the interconnection, we increase a usage counter
defined as a vertex property on each one, denoting that it is already part of the
allocation and that it should not be reused for interconnecting additional bricks.
Several techniques to avoid loops in traversals and to improve performance have
been used, which, however, are beyond the scope of this chapter.

4.3 Compute Brick Operating System Layer

The compute brick runs the hypervisor, a modified version of the Linux kernel
with KVM modules that add virtual machine management capabilities. In this
section, we describe the main operating-system-level extensions over a traditional
Linux system. As expected, innovations in comparison with state-of-the-art sys-
tems relate to the management of remote memory and the allocation/dealloca-
tion process.

Memory Driver The memory driver is a collection of hypervisor-level modules
supporting dynamic allocation and deallocation of memory resources to the host
operating system running on a compute brick. The memory driver implements
interfaces which configure the remote memory access, both during guest VM
allocation and for dynamic resizing of remote resources. In the rest of this section,
we focus on the specification of the main sub-components of the memory driver,
namely, memory hotplug and NUMA extensions.

Once the required hardware components are set up to connect a compute
brick with one or more remote memory bricks, the hypervisor running on the
compute brick makes the new memory available to its local processes. These
processes include VMs, each living in a distinct QEMU process. In order to
make remote memory available, the hypervisor extends its own physical address
space. This extended part corresponds to the physical addresses that are mapped
to remote destinations. Once these addresses are accessed by the local processor,
they are intercepted by the programmable logic and forwarded to the appropriate
destination.

Memory hotplug is a mechanism that was originally developed to introduce
software-side support for server boards that allow to physically plug additional
memory SO-DIMMs at runtime. At insertion of new physical memory, a kernel
needs to be notified about its existence and subsequently to initialize correspond-
ing new page frames on the additional memory as well as to make them available
to new processes. In memory hotplug terminology, this procedure is referred to
as a “hot add”. Similarly, a “hot remove” procedure is triggered via software
to allow detaching pages from a running kernel and to allow the physical re-
moval of memory modules. While originally developed for the x86 architecture,

16 Authors Suppressed Due to Excessive Length

memory hotplug has been ported so far to several different architectures, with
our implementation focusing on ARM64. The compute-brick kernel reuses the
functionalities provided by memory hotplug to extend the operating system’s
physical memory space by adding new pages to a running kernel and, similarly,
removing them once memory is deallocated from the brick. Unlike the standard
use of memory hotplug in traditional systems, there is no physical attachment
of new hardware in dReDBox; for this reason, both hot add and hot remove
have to be initiated via software in response to remote memory attach/detach
requests.

Although the choice of building remote memory attachment on top of Linux
memory hotplug allows to save considerable effort by reusing existing code and
proven technology, there is a main challenge associated with using it in the
context of the proposed architecture. The hotplug mechanism needs to be well
integrated with programmable logic reconfiguration, in a way that guarantees
that physical addresses as seen by the operating system kernel and content of
programmable logic hardware tables are consistent. Non Uniform Memory Ac-
cess (NUMA) refers to a memory design for single-board multiprocessor systems
where CPUs and memory modules are grouped in nodes. A NUMA node is a log-
ical group of (up to) one CPU and the memory modules which are mounted on
the board physically close (local) to the processor. Even though a processor can
access the memory on any node of the NUMA system, accessing node-local mem-
ory grants significantly better performance in terms of latency and throughput,
while performance of memory operations on other nodes depends on the dis-
tance of the two nodes involved, which, in traditional systems, reflects both the
physical distance on the board and the architecture of the board-level memory
interconnect between the processor and the memory module. When a new pro-
cess is started on a processor, the default memory allocation allocates memory
for that process from the local NUMA node. This is based on the assumption that
the process will run on the local node and so all memory accesses should happen
on the local node in order to avoid the lower latency nodes. This approach works
well when dealing with small applications. However, large applications that re-
quire more processors or more memory than the local node has to offer will be
allocated memory from non-local NUMA nodes. With time, memory allocations
can become unbalanced, i.e., a process scheduled on a NUMA node could spend
most of its memory access-time on non-local NUMA nodes. To mitigate this
phenomenon, the Linux kernel implements a periodic NUMA balancing routine.
NUMA balancing scans the address space of tasks and unmaps the translation to
physical address space in order to trap future page faults. When handling a page
fault, it detects if pages are properly placed or if they should be migrated to a
node local to the CPU where the task is running. NUMA extensions of the Linux
Kernel are exploited by our architecture as a means to represent remote memory
modules as distinct NUMA nodes: we group remote memory chunks allocated to
the brick into one or more CPU-less NUMA nodes. Each of these nodes has its
own distance (latency) characterization, reflecting the different latency classes
of remote memory allocations (e.g., tray-local, rack-local, or inter-rack). We de-

dReDBox: a Disaggregated Architectural Perspective for Data Centers 17

Fig. 11. A simplistic illustration of the DiMEM simulation tool for disaggregated mem-
ory.

velop a framework to dynamically provide the Linux Kernel with an overview of
the available memory every time new modules are hot plugged to the local sys-
tem and also provide the distance (latency) between CPUs and allocated remote
memory. This information facilitates the development and extension of current
task placement and memory allocation techniques within the Linux Kernel for
the effective scheduling of VMs to CPUs and for improved locality in memory
allocation.

5 Simulating Disaggregated Memory

Disaggregated memory is of paramount importance to the approach of disaggre-
gation in data centers, and the capacity to analyze and understand its effect on
performance is a prerequisite for the efficient mapping of applications to such
architectures. The current section describes a simulation tool for disaggregated
memory, dubbed DiMEM Simulator [18, 19] (Disaggregated Memory Simulator),
which facilitates the exploration of alternative execution scenarios of typical HPC
and cloud applications on shared memory architectures, e.g., Raytrace and Data
Caching.

DiMEM Simulator relies on Intel’s PIN framework [20] for instrumentation
and application analysis purposes, while DRAMSim2 [21] is employed for mem-
ory simulations. Figure 11 depicts a simplistic view of DiMEM Simulator. On the
front end, DiMEM Simulator conducts functional simulations of the TLB and
the cache hierarchy, and generates a trace file of accesses to main memory. The
Allcache pin tool (developed by Artur Klauser [20]) for functional simulations
of instruction/data TLB and the cache hierarchy served as the basis in order
to support multithreading and hyper threading. Instrumentation is conducted
at the instruction granularity level in order to detect memory accesses that are
then analyzed to distinguish between cache hits and misses. The aim is to deter-
mine actual accesses to main memory, which inevitably follow the LLC misses.
DiMEM Simulator maintains a list of records for every access to main memory,
which is used to generate the required memory trace file.

18 Authors Suppressed Due to Excessive Length

On the back end, DRAMSim2 is deployed to analyze the generated memory
trace file. A trace file example for DRAMSim2 is shown below, with the first
column providing a virtual address, followed by the type of instruction and the
cycle it was issued.

0x7f64768732d0 P_FETCH 1

0x7ffd16a5a538 P_MEM_WR 8

0x7f6476876a40 P_FETCH 12

0x7f6476a94e70 P_MEM_RD 61

0x7f6476a95000 P_MEM_RD 79

Once a certain amount of memory traces is generated, the so-called window, a
penalty-based scoring scheme is employed to determine the cycle each instruction
is accessing memory. Sorting instructions by the memory-access cycle facilitates
simulations in multithreaded execution environments. Given the two types of
memory that DiMEM is simulating, i.e., local and remote (disaggregated), two
DRAMSim2 instances are employed. The second instance is required to model
remote memory correctly, given the additional latency of the interconnect.

To evaluate DiMEM Simulator, a variety of HPC and cloud benchmarks
were employed. HPC benchmarks involved Barnes, Volrend, and Raytrace of
the Splash-3 benchmark suite [22], and FluidAnimate of the PARSEC bench-
mark suite [23]. The memcached-based Data Caching benchmark of the Cloud-
Suite [24, 25] benchmark suite for cloud services was employed as the cloud
benchmark. All benchmarks were evaluated based on a series of processor config-
urations that were modeled after modern, high-end microprocessor architectures.
Four different memory allocation schemes were employed, with an increasing
percentage of remote memory, i.e., 0%, 25%, 50%, and 75%, as well as varying
latency for remote accesses, ranging between 500ns and 2,000ns.

Figures 12 and 13 illustrate Raytrace and Data Caching Workload profiles
based on LLC misses measured in Misses per Kilo Instructions (MPKI) per
window. As can be observed in the figures, the workload of the Raytrace appli-
cation exhibits significant variations over time, whereas the Data Caching one
remains largely constant. This directs sampling accordingly in order to avoid
prohibitively large evaluation times.

Figure 14 illustrates the effect of disaggregated memory on application exe-
cution in terms of induced overhead/slowdown and varying effective bandwidth
as disaggregated latency increases from 500ns and up to 2,000ns. A RISC-based
CPU with 4GB of total memory is employed in all cases, while the percentage of
remote memory in the system varies from 25% to 75%. As expected, increasing
disaggregated latency reduces the effective bandwidth of the remote memory
equivalently in all three remote-memory-usage scenarios, i.e., 25% (Fig. 14b),
50%(Fig. 14d), and 75%(Fig. 14f). As the percentage of remote memory in the
system increases, the negative effect of increased remote memory latency on ap-
plication performance intensifies, as observed in Fig. 14a, Fig. 14c, and Fig. 14e.
As can be observed in the figures, the increased access latency to remote mem-
ory reduces overall performance. However, the results suggest that maintaining

dReDBox: a Disaggregated Architectural Perspective for Data Centers 19

Sheet1

Page 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window Index

M
P

K
I

Fig. 12. Workload profile for Raytrace (Splash-3 benchmark suite [22]), measured as
the number of missed per kilo instruction (MPKI) per window.Sheet1

Page 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Window Index

M
P

K
I

Fig. 13. Workload profile for Data Caching (CloudSuite benchmark suite [25]), mea-
sured as the number of missed per kilo instruction (MPKI) per window.

latency to disaggregated memory below 1,000 ns yields acceptable performance
deterioration, allowing to benefit from the overall disaggregated approach.

6 Conclusion

The dReDBox project aims at achieving fine-grained resource disaggregation,
with function blocks representing the basic units for creating virtual machines.
This can lead to fully configurable data center boxes that exhibit the capacity
to better serve application requirements, by quantitatively adapting resources
to application workload profiles. Compute-intensive applications, for instance,
will induce the allocation of increased amounts of CPU nodes, whereas memory-
intensive applications will trade processing power for memory and storage re-
sources. Evidently, the success of this approach relies on eliminating disaggregation-
induced overheads at all levels of the system design process, in order to virtually
reduce the physical distance among resources in terms of latency and bandwidth.

20 Authors Suppressed Due to Excessive Length

500 750 1000 1250 1500 1750 2000
0

0.2

0.4

0.6

0.8

1

1.2
1.04 1.07 1.09 1.12 1.13 1.16 1.19

0.29 0.32 0.34 0.37 0.39 0.41 0.43

0.75 0.75 0.75 0.76 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve
rh
ea
d
ov
er

sc
en

ar
io

1
00

%
-0
%

Slowdown for 75%-25% memory scheme

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w
id
th

(M
B
/
s)

Bandwidth for 75%-25% memory scheme

Local
Remote

Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.09
1.14 1.19 1.24

1.29
1.34 1.37

0.59
0.64 0.69 0.73

0.78
0.84 0.87

0.5 0.5 0.51 0.51 0.51 0.5 0.5

Disaggregated Latency (ns)

O
ve
rh
ea
d
ov
er

sc
en

ar
io

10
0%

-0
%

Slowdown for 50%-50% memory scheme

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w
id
th

(M
B
/
s)

Bandwidth for 50%-50% memory scheme

Local
Remote

Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.14
1.21

1.27
1.35

1.41
1.48

1.56

0.88
0.95

1.02
1.09

1.15
1.22

1.31

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve
rh
ea
d
ov
er

sc
en

ar
io

10
0%

-0
%

Slowdown for 25%-75% memory scheme

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w
id
th

(M
B
/s
)

Bandwidth for 25%-75% memory scheme

Local
Remote

Local100%

(f)

Fig. 14. The effect of disaggregated memory on application execution in terms of
overhead/slowdown and effective memory bandwidth for varying disaggregated latency
values.

Acknowledgements

This work was supported in part by EU H2020 ICT project dRedBox, contract
#687632.

Bibliography

[1] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash
storage disaggregation,” in Proceedings of the Eleventh European Conference
on Computer Systems. ACM, 2016, p. 29.

[2] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.
ACM, 2009, pp. 267–278.

[3] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated memory,”
in High Performance Computer Architecture (HPCA), 2012 IEEE 18th In-
ternational Symposium on. IEEE, 2012, pp. 1–12.

[4] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh, “Marlin: A memory-based rack area
network,” in Proceedings of the tenth ACM/IEEE symposium on Archi-
tectures for networking and communications systems. ACM, 2014, pp.
125–136.

[5] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast re-
mote memory,” in Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, 2014, pp. 401–414.

[6] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,
“Enabling FPGAs in the cloud,” in Proceedings of the 11th ACM Conference
on Computing Frontiers. ACM, 2014, p. 3.

[7] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators for
efficient cloud computing,” in Cloud Computing Technology and Science
(CloudCom), 2015 IEEE 7th International Conference on. IEEE, 2015,
pp. 430–435.

[8] K. Vipin and S. A. Fahmy, “Dyract: A partial reconfiguration enabled ac-
celerator and test platform,” in Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on. IEEE, 2014, pp. 1–7.

[9] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A cloud-scale ac-
celeration architecture,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 2016, pp. 1–13.

[10] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A re-
configurable fabric for accelerating large-scale datacenter services,” in Com-
puter Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium
on. IEEE, 2014, pp. 13–24.

[11] C. Kachris, D. Soudris, G. Gaydadjiev, H.-N. Nguyen, D. S. Nikolopoulos,
A. Bilas, N. Morgan, C. Strydis, C. Tsalidis, J. Balafas et al., “The vineyard
approach: Versatile, integrated, accelerator-based, heterogeneous data cen-
tres,” in International Symposium on Applied Reconfigurable Computing.
Springer, 2016, pp. 3–13.

22 Authors Suppressed Due to Excessive Length

[12] I. Mavroidis, I. Papaefstathiou, L. Lavagno, D. S. Nikolopoulos, D. Koch,
J. Goodacre, I. Sourdis, V. Papaefstathiou, M. Coppola, and M. Palomino,
“Ecoscale: Reconfigurable computing and runtime system for future ex-
ascale systems,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016. IEEE, 2016, pp. 696–701.

[13] S. H. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyukto-
sunoglu, A. Davis, and F. Li, “Comparing implementations of near-data
computing with in-memory mapreduce workloads,” IEEE Micro, vol. 34,
no. 4, pp. 44–52, 2014.

[14] “OpenStack,” https://www.openstack.org/, 2017.
[15] “OpenStack Nova,” https://docs.openstack.org/developer/nova/, 2017.
[16] “OpenStack Horizon,” https://docs.openstack.org/developer/horizon/,

2017.
[17] “JanusGraph: Distributed graph database,” http://janusgraph.org/, 2017.
[18] A. Andronikakis, “Memory system evaluation for disaggregated cloud data

centers,” 2017.
[19] O. Papadakis, “Memory system evaluation of disaggregated high perfor-

mance parallel systems,” 2017.
[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: building customized program analysis
tools with dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[21] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate
memory system simulator,” IEEE Computer Architecture Letters, vol. 10,
no. 1, pp. 16–19, 2011.

[22] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly
synchronized benchmark suite for contemporary research,” in Performance
Analysis of Systems and Software (ISPASS), 2016 IEEE International Sym-
posium on. IEEE, 2016, pp. 101–111.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings of
the 17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72–81.

[24] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,” in
ACM SIGPLAN Notices, vol. 47, no. 4. ACM, 2012, pp. 37–48.

[25] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmarking,” in
2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2016, pp. 122–132.

