7 research outputs found
Communications in Emergency and Crisis Situations
Abstract. In emergency and crisis situations (ECS) like earthquakes, tsunamis, terrorist attacks, it is very important that communication facilities are operative to provide services both to rescue teams and civilians. In ECS it is very common that communication premises are often unable to provide services, either due to physical damages or traffic overload. In such a case there is the need for rapid reestablishment of communication services. In this paper the communication services that can be exploited for ECS mitigation are discussed. The usage scenarios of such services are studied. Following that and looking from a network perspective view an ECS communication network architecture is presented. This architecture aims to provide seamless interoperability of varies communication technologies often present in EC
Recommended from our members
A lightweight framework for secure life-logging in smart environments
As the world becomes an interconnected network where objects and humans interact with each other, new challenges and threats appear in the ecosystem. In this interconnected world, smart objects have an important role in giving users the chance for life-logging in smart environments. However, smart devices have several limitations with regards to memory, resources and computation power, hindering the opportunity to apply well-established security algorithms and techniques for secure life-logging on the Internet of Things (IoT) domain. The need for secure and trustworthy life-logging in smart environments is vital, thus, a lightweight approach has to be considered to overcome the constraints of smart objects. The purpose of this paper is to present in details the current topics of life-logging in smart environments, while describing interconnection issues, security threats and suggesting a lightweight framework for ensuring security, privacy and trustworthy life-logging. In order to investigate the efficiency of the lightweight framework and the impact of the security attacks on energy consumption, an experimental test-bed was developed including two interconnected users and one smart attacker, who attempts to intercept transmitted messages or interfere with the communication link. Several mitigation factors, such as power control, channel assignment and AES-128 encryption were pplied for secure life-logging. Finally, research into the degradation of the consumed energy regarding the described intrusions is presented
Recommended from our members
Patterns for the design of secure and dependable software defined networks
In an interconnected world, cyber and physical networks face a number of challenges that need to be resolved. These challenges are mainly due to the nature and complexity of interconnected systems and networks and their ability to support heterogeneous physical and cyber components simultaneously. The construction of complex networks preserving Security and Dependability (S&D) properties is necessary to avoid system vulnerabilities, which may occur in all the different layers of Software Defined Networking (SDN) architectures. In this paper, we present a model based approach to support the design of secure and dependable SDN. This approach is based on executable patterns for designing networks able to guarantee S&D properties and can be used in SDN networks. The design patterns express conditions that can guarantee specific S&D properties and can be used to design networks that have these properties and manage them during their deployment. To evaluate our pattern approach, we have implemented executable pattern instances, in a rule-based reasoning system, and used them to design and verify wireless SDN networks with respect to availability and confidentiality. To complete this work, we propose and evaluate an implementation framework in which S&D patterns can be applied for the design and verification of SDN networks