4,083 research outputs found

    Disaggregated Bundle Methods for Distributed Market Clearing in Power Networks

    Full text link
    A fast distributed approach is developed for the market clearing with large-scale demand response in electric power networks. In addition to conventional supply bids, demand offers from aggregators serving large numbers of residential smart appliances with different energy constraints are incorporated. Leveraging the Lagrangian relaxation based dual decomposition, the resulting optimization problem is decomposed into separate subproblems, and then solved in a distributed fashion by the market operator and each aggregator aided by the end-user smart meters. A disaggregated bundle method is adapted for solving the dual problem with a separable structure. Compared with the conventional dual update algorithms, the proposed approach exhibits faster convergence speed, which results in reduced communication overhead. Numerical results corroborate the effectiveness of the novel approach.Comment: To appear in GlobalSIP 201

    Risk-Aware Management of Distributed Energy Resources

    Full text link
    High wind energy penetration critically challenges the economic dispatch of current and future power systems. Supply and demand must be balanced at every bus of the grid, while respecting transmission line ratings and accounting for the stochastic nature of renewable energy sources. Aligned to that goal, a network-constrained economic dispatch is developed in this paper. To account for the uncertainty of renewable energy forecasts, wind farm schedules are determined so that they can be delivered over the transmission network with a prescribed probability. Given that the distribution of wind power forecasts is rarely known, and/or uncertainties may yield non-convex feasible sets for the power schedules, a scenario approximation technique using Monte Carlo sampling is pursued. Upon utilizing the structure of the DC optimal power flow (OPF), a distribution-free convex problem formulation is derived whose complexity scales well with the wind forecast sample size. The efficacy of this novel approach is evaluated over the IEEE 30-bus power grid benchmark after including real operation data from seven wind farms.Comment: To appear in Proc. of 18th Intl. Conf. on DSP, Santorini Island, Greece, July 1-3, 201

    Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    Get PDF
    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium, and thus a constant Chapman Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatio-temporal averaged structure of the waves in these systems is analyzed via a Favre averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical non-equilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed

    Black holes and Higgs stability

    Full text link
    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.Comment: 27 pages, 10 figures, conclusions expanded, to appear in JCA

    A spectrally-accurate FVTD technique for complicated amplification and reconfigurable filtering EMC devices

    Get PDF
    The consistent and computationally economical analysis of demanding amplification and filtering structures is introduced in this paper via a new spectrally-precise finite-volume time-domain algorithm. Combining a family of spatial derivative approximators with controllable accuracy in general curvilinear coordinates, the proposed method employs a fully conservative field flux formulation to derive electromagnetic quantities in areas with fine structural details. Moreover, the resulting 3-D operators assign the appropriate weight to each spatial stencil at arbitrary media interfaces, while for periodic components the domain is systematically divided to a number of nonoverlapping subdomains. Numerical results from various real-world configurations verify our technique and reveal its universality

    W production at large transverse momentum at the Large Hadron Collider

    Get PDF
    We study the production of W bosons at large transverse momentum in pp collisions at the Large Hadron Collider (LHC). We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable theoretical prediction.Comment: 12 pages, 7 figure
    • 

    corecore