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Abstract

We study the production of W bosons at large transverse momentum in pp collisions at
the Large Hadron Collider (LHC). We calculate the complete next-to-leading order (NLO)
corrections to the differential cross section. We find that the NLO corrections provide a
large increase to the cross section but, surprisingly, do not reduce the scale dependence
relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO)
soft-gluon corrections and find that, although they are small, they significantly reduce the
scale dependence thus providing a more stable theoretical prediction.

http://arXiv.org/abs/hep-ph/0507317v1


1 Introduction

The study of W -boson production in hadron colliders is important in testing the Standard
Model [1] and in estimating backgrounds to Higgs production and new physics [2]. Precise
theoretical predictions for W production at the Large Hadron Collider (LHC) are needed to
exploit fully the large number of such events that are anticipated when the LHC begins opera-
tion in 2007. Accurate predictions for this process, which has a particularly clean experimental
signature when the W decays to leptons, are needed to reduce the systematic uncertainties in
precision measurements, e.g., of the W mass and decay width. Due to the large number of
events expected, this process can also be used to determine the parton-parton luminosity [3].
Furthermore, accurate calculations for W production at large transverse momentum, QT , are
required to distinguish the Standard Model prediction from signals of possible new physics,
such as new gauge bosons and extra dimensions [4], which may be expected to enhance the QT

distribution at large QT .
Calculations of the next-to-leading order (NLO) cross section for W production at large

transverse momentum at the Fermilab Tevatron collider were presented in Refs. [5, 6]. These
predictions have been tested experimentally by the CDF and DØ collaborations [7], and found
to be consistent with the data at large QT . The NLO corrections contribute to enhance the
differential distributions in QT of the W boson and they reduce the factorization and renormal-
ization scale dependence of the cross section. A recent study [8] included soft-gluon corrections
through next-to-next-to-leading order (NNLO), which provide additional enhancements and a
further reduction of the scale dependence.

At leading order (LO) in the Quantum Chromodynamic (QCD) coupling αs, a W -boson can
be produced at large QT by recoiling against a single parton which decays into a jet of hadrons.
The NLO corrections to this cross section involve one-loop parton processes with a virtual gluon,
and real radiative processes with two partons in the final state. The virtual corrections involve
ultraviolet divergences which renormalize αs and cause it to depend on a renormalization energy
scale which we will take to be ∼QT . Both real and virtual corrections have soft and collinear
divergences which arise from the masslessness of the gluons and our approximation of zero
masses for the quarks. The soft divergences cancel between real and virtual processes. The
net collinear singularities are factorized in a process-independent manner and absorbed into
factorization-scale-dependent parton distribution functions. Complete analytic expressions for
the inclusive NLO cross sections in terms of the partonic Mandelstam variables were presented
in Refs. [5, 6], and form the basis for the NLO results in this work.

The calculation of hard-scattering cross sections near partonic threshold, such as W -boson
production at large transverse momentum, involves corrections from the emission of soft gluons
from the partons in the process. At each order in perturbation theory one encounters large
logarithms that arise from the cancellations between real emission and virtual processes, due
to the limited phase space available for real gluon emission near partonic threshold. These
threshold corrections formally exponentiate as a result of the factorization properties [9] of the
cross section. Expansions of the resummed cross section can be derived in principle to any
higher order. A unified approach to the calculation of NNLO soft-gluon corrections for hard-
scattering processes was recently presented in Ref. [10]. Analytic expressions for W production
are given in Ref. [8].
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We note that there has also been work on resummation of Sudakov logarithms at small
transverse momentum for electroweak boson production in hadron colliders [11, 12, 13, 14] as
well as on joint resummation of QT and threshold logarithms [15]. The results presented in this
paper for large QT ≥ 20 GeV are not sensitive to this resummation.

In this paper we calculate the complete NLO corrections as well as the NNLO soft-gluon
corrections for W -boson production at large transverse momentum at the LHC. We study the
size of the corrections and their significance in stabilizing the cross section versus changes in
the factorization and renormalization scales.

2 Kinematics and Partonic Cross Sections

For the production of a W boson, with momentum Q, in collisions of two hadrons hA and hB

with momenta PA and PB

hA(PA) + hB(PB) −→ W (Q) + X , (2.1)

where X denotes all additional particles in the final state, we can write the factorized single-
particle-inclusive cross section as

EQ

dσhAhB→W (Q)+X

d3Q
=

∑

fa,fb

∫

dxa dxb φfa/hA
(xa, µ

2
F ) φfb/hB

(xb, µ
2
F )

×EQ

dσ̂fafb→W (Q)+X

d3Q
(s, t, u, Q2, µF , µR, αs(µ

2
R)) (2.2)

where EQ = Q0, the parton distribution φf/h is the probability density in the momentum
fraction x for finding parton f with momentum p = xP in hadron h, and σ̂ is the perturbative
parton-level cross section. The initial-state collinear singularities are factorized into the parton
distributions at factorization scale µF , while µR is the renormalization scale.

At the parton level, the lowest-order subprocesses for the production of a W boson and a
parton involve quarks q, anti-quarks q̄ and gluons g:

q(pa) + g(pb) −→ W (Q) + q(pc) ,

q(pa) + q̄(pb) −→ W (Q) + g(pc) . (2.3)

The partonic kinematical invariants in the process are s = (pa+pb)
2, t = (pa−Q)2, u = (pb−Q)2,

and s2 = s + t + u−Q2 = (pa + pb −Q)2. Here s2 is the invariant mass of the system recoiling
against the electroweak boson at the parton level and parameterizes the inelasticity of the
parton scattering, taking the value s2 = 0 for one-parton production.

Schematically, the parton level cross sections at NLO have the form

EQ

dσ̂fafb→W (Q)+X

d3Q
= δ(s2)αs(µ

2
R)
[

A(s, t, u) + αs(µ
2
R)B(s, t, u, µR)

]

+ α2
s(µ

2
R)C(s, t, u, s2, µF ) .

(2.4)
The coefficient functions A, B and C depend on the parton flavors fafb and on electroweak
parameters (which are suppressed), in addition to the kinematic variables s, t, u, s2, and scales
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µR, µF shown explicitly. The coefficient A(s, t, u) arises from the LO processes in Eq. (2.3).
The functions B and C result from a perturbative QCD calculation of the virtual and real
corrections, respectively, to the processes (2.3). The NLO calculation is done using dimen-
sional regularization and modified minimal subtraction (MS) to deal with ultraviolet, soft, and
collinear divergences. The function B(s, t, u, µR) is the finite (after renormalization) sum of
virtual corrections and of singular terms ∼δ(s2) in the real radiative corrections. The function
C(s, t, u, s2, µF ) is the finite (after factorization) contribution from real emission processes away
from the edge s2 = 0 of phase space. Analytic expressions for these functions from Ref. [6] were
used to compute the numerical NLO results in this paper.

In general, the partonic cross section σ̂ includes distributions with respect to s2 at n-th
order in the QCD coupling αs of the type

[

lnm(s2/Q
2
T )

s2

]

+

, m ≤ 2n − 1 , (2.5)

defined by their integral with any smooth function f by

∫ s2 max

0
ds2 f(s2)

[

lnm(s2/Q
2
T )

s2

]

+

≡
∫ s2 max

0
ds2

lnm(s2/Q
2
T )

s2
[f(s2) − f(0)]

+
1

m + 1
lnm+1

(

s2 max

Q2
T

)

f(0) . (2.6)

These “plus” distributions are the remnants of cancellations between real and virtual contribu-
tions to the cross section. Below we will make use of the terminology that at n-th order in αs

the leading logarithms (LL) are those with m = 2n − 1 in Eq. (2.5), the next-to-leading loga-
rithms (NLL) are those with m = 2n − 2, the next-to-next-to-leading logarithms (NNLL) are
those with m = 2n−3, and the next-to-next-to-next-to-leading logarithms (NNNLL) are those
with m = 2n − 4. Below the term “NNLO-NNNLL” means that the soft-gluon contributions
through NNNLL to the NNLO corrections have been included and added to the complete NLO
result (for details see Ref. [8]).

3 Numerical results

We now apply our results to W production at large transverse momentum at the LHC. Through-
out we use the MRST2002 parton densities [16]. The QCD coupling αs(µ

2
R/Λ2) is computed

using the appropriate value of the 4-flavor QCD scale parameter Λ4 required by the LO, NLO,
and NNLO parton densities, and assuming five flavors of quarks (u,d,s,c,b). The coupling
is evolved using the massless LO, NLO and NNLO β-function as appropriate, and using the
standard [1] effective-flavor scheme to cross heavy-quark thresholds. The electroweak coupling
α(M2

Z) is evaluated at the mass of the Z boson, and standard values [1] are used for the various
electroweak parameters.

In all of the numerical results we present the sum of cross sections for W− and W+ produc-
tion. W bosons at the LHC will be detected primarily through their leptonic decay products
e.g., W− → ℓν̄ℓ. Our cross sections should therefore be multiplied by the appropriate branching
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Figure 1: The differential cross section, dσ/dQ2
T , for W production in pp collisions at the LHC

with
√

S = 14 TeV and µ = µF = µR = QT . Shown are the LO, NLO, and NNLO-NNNLL
results.

ratios (∼0.11 for each lepton species). Our cross sections are integrated over the full phase space
of the W and final state partons. Detailed comparisons with experiment will require realistic
cuts on lepton and jet momenta. These modifications will affect the overall normalization of
the cross sections, but they should not affect the main results of this paper concerning the
convergence and reliability of perturbative corrections.

In Fig. 1 we plot the transverse momentum distribution, dσ/dQ2
T , for W production at the

LHC with
√

S = 14 TeV. Here we set µF = µR = QT and denote this common scale by µ. We
plot LO, NLO, and NNLO-NNNLL results. In the LO result we use LO parton densities, in
the NLO result we use NLO parton densities, and in the NNLO-NNNLL result we use NNLO
parton densities. We see that the NLO corrections provide a significant enhancement of the LO
QT distribution. The NNLO-NNNLL corrections provide a further rather small enhancement
of the QT distribution, which is hardly visible in the plot. Part of the reason for the small
difference between the NLO and the NNLO-NNNLL curves is that the NNLO parton densities
reduce the cross section. As we will see below, the NNLO-NNNLL corrections can be much
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Figure 2: The K-factors for the differential cross section, dσ/dQ2
T , for W production in pp

collisions at the LHC with
√

S = 14 TeV and µ = µF = µR = QT . Shown are the K- factors
for NLO/LO and NNLO-NNNLL/NLO. The latter is shown with the same or different parton
distribution functions (pdf) for the NLO and NNLO results.

bigger for other choices of factorization and renormalization scales. We also note that the
NNLO-NNNLL result is practically the same as at NNLO-NNLL (i.e. if we had kept one level
less of logarithms), and that while the LL, NLL, and NNLL terms are complete, the NNNLL
terms are not complete but include the dominant contributions (see [8] for details).

In Fig. 2 we plot the K-factors, i.e. the ratios of cross sections at various orders and
accuracies to the LO cross section, all with µF = µR = QT , in the high-QT region. We see that
the NLO/LO ratio is rather large; the NLO corrections increase the LO result by about 30% to
50% in the QT range shown. In contrast, the NNLO-NNNLL/NLO ratio for this choice of scale
is rather small. Part of the reason for this is that the NNLO parton densities are significantly
smaller than the NLO parton densities. To make this point more clearly we also show a curve for
the NNLO-NNNLL/NLO K-factor where both the NNLO-NNNLL and the NLO cross sections
are calculated using the same NNLO parton densities. The ratio is then significantly bigger.
We can also see that the NNLO-NNNLL/NLO K-factors are nearly constant over the QT range
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Figure 3: The differential cross section, dσ/dQ2
T , for W production in pp collisions at the

LHC with
√

S = 14 TeV, QT = 50 GeV, and µ = µF = µR. Shown are the LO, NLO, and
NNLO-NNNLL results.

shown even though the differential cross sections themselves span three orders of magnitude in
this range.

In Figs. 3, 4, and 5 we plot the scale dependence of the differential cross section for QT = 50,
80, and 150 GeV, respectively. We set µF = µR and denote this common scale by µ. We plot
the differential cross section versus µ/QT over two orders of magnitude. We note that the scale
dependence of the cross section is not reduced when the NLO corrections are included, but
we have an improvement when the NNLO-NNNLL corrections are added. The NNLO-NNNLL
result approaches the scale independence expected of a truly physical cross section.

It is interesting, and perhaps a little surprising, that the scale dependence of the LO results
in Figs. 3, 4, 5 is less pronounced than that of the NLO results. One might expect that the scale
dependence should decrease with each successive order of perturbation theory. This is indeed
what is observed at Tevatron energies [6, 8], where the LO cross section increases monotonically
with decreasing scale and has positive curvature. The LO curves in Figs. 3, 4, 5 have little
curvature, and at QT = 80 GeV the curve actually turns over at small µ/QT . In Fig. 6 we
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Figure 4: The differential cross section, dσ/dQ2
T , for W production in pp collisions at the

LHC with
√

S = 14 TeV, QT = 80 GeV, and µ = µF = µR. Shown are the LO, NLO, and
NNLO-NNNLL results.

plot the LO scale dependence separately for µF and µR with the other held fixed. The cross
section increases with positive curvature as the renormalization scale µR is decreased: this is
the expected behavior at LO due to asymptotic freedom. The µF dependence however has
negative curvature and the cross section increases with scale. This behavior is due to the fact
that the cross section is dominated by the gluon-initiated process qg → Wq. The gluon density
in the proton increases rapidly with scale at fixed x smaller than ∼0.01. At LHC energies, the
µR and µF dependencies cancel one another approximately, while the scale dependence of the
LO cross section at Tevatron energies is dominated by the µR dependence of αs.

In Fig. 7 we plot the differential cross section dσ/dQ2
T at high QT with

√
S = 14 TeV for

two values of scale, QT /2 and 2QT , often used to display the uncertainty due to scale variation.
We note that while the variation of the LO cross section is significant and the variation at NLO
is similar to LO, at NNLO-NNNLL it is very small. In fact the two NNLO-NNNLL curves lie
very close to or on top of each other. These results are consistent with Figs. 3, 4, 5.
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Figure 5: The differential cross section, dσ/dQ2
T , for W production in pp collisions at the LHC

with
√

S = 14 TeV, QT = 150 GeV, and µ = µF = µR. Shown are the LO, NLO, and
NNLO-NNNLL results.

4 Conclusions

We have presented the full NLO and the NNLO soft-gluon corrections for W production at large
transverse momentum in pp collisions at the LHC. We have shown that the NLO corrections are
large but do not diminish the scale dependence of the cross section relative to LO. The NNLO-
NNNLL corrections are very small for µ = QT but they significantly decrease the factorization
and renormalization scale dependence of the transverse momentum distributions. These precise
and reliable perturbative QCD predictions for inclusive W production will facilitate precision
tests of the Standard Model, measurements of parton densities, and searches for new physics
at the LHC.
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Figure 6: The differential cross section, dσ/dQ2
T , for W production in pp collisions at the LHC

with
√

S = 14 TeV, QT = 80 GeV. Shown are the LO results with µF = µR, and with µF and
µR varied separately.
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