5,336 research outputs found

    Nonlinear second-order multivalued boundary value problems

    Get PDF
    In this paper we study nonlinear second-order differential inclusions involving the ordinary vector pp-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.Comment: 26 page

    Existence and multiplicity results for resonant fractional boundary value problems

    Full text link
    We study a Dirichlet-type boundary value problem for a pseudo-differential equation driven by the fractional Laplacian, with a non-linear reaction term which is resonant at infinity between two non-principal eigenvalues: for such equation we prove existence of a non-trivial solution. Under further assumptions on the behavior of the reaction at zero, we detect at least three non-trivial solutions (one positive, one negative, and one of undetermined sign). All results are based on the properties of weighted fractional eigenvalues, and on Morse theory

    Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production

    Get PDF
    I present results for two-loop soft anomalous dimensions for heavy quark production which control soft-gluon resummation at next-to-next-to-leading-logarithm (NNLL) accuracy. I derive an explicit expression for the exact result and study it numerically for top quark production via e+ e- -> t tbar, and I construct a surprisingly simple but very accurate approximation. I show that the two-loop soft anomalous dimensions with massive quarks display a simple proportionality relation to the one-loop result only in the limit of vanishing quark mass. I also discuss the extension of the calculation to single top and top pair production in hadron colliders.Comment: 10 pages, 6 figures; improved form of the analytical result; equation adde

    Constant sign and nodal solutions for nonhomogeneous Robin boundary value problems with asymmetric reactions

    Get PDF
    We study a nonlinear, nonhomogeneous elliptic equation with an asymmetric reaction term depending on a positive parameter, coupled with Robin boundary conditions. Under appropriate hypotheses on both the leading differential operator and the reaction, we prove that, if the parameter is small enough, the problem admits at least four nontrivial solutions: two of such solutions are positive, one is negative, and one is sign-changing. Our approach is variational, based on critical point theory, Morse theory, and truncation techniques.Comment: 22 page

    Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues

    Full text link
    We consider a semilinear elliptic equation with a nonsmooth, locally \hbox{Lipschitz} potential function (hemivariational inequality). Our hypotheses permit double resonance at infinity and at zero (double-double resonance situation). Our approach is based on the nonsmooth critical point theory for locally Lipschitz functionals and uses an abstract multiplicity result under local linking and an extension of the Castro--Lazer--Thews reduction method to a nonsmooth setting, which we develop here using tools from nonsmooth analysis.Comment: 23 page
    corecore