5 research outputs found

    Using galaxy pairs as cosmological tracers

    Full text link
    The Alcock-Paczynski (AP) effect uses the fact that, when analyzed with the correct geometry, we should observe structure that is statistically isotropic in the Universe. For structure undergoing cosmological expansion with the background, this constrains the product of the Hubble parameter and the angular diameter distance. However, the expansion of the Universe is inhomogeneous and local curvature depends on density. We argue that this distorts the AP effect on small scales. After analyzing the dynamics of galaxy pairs in the Millennium simulation, we find an interplay between peculiar velocities, galaxy properties and local density that affects how pairs trace cosmological expansion. We find that only low mass, isolated galaxy pairs trace the average expansion with a minimum "correction" for peculiar velocities. Other pairs require larger, more cosmology and redshift dependent peculiar velocity corrections and, in the small-separation limit of being bound in a collapsed system, do not carry cosmological information.Comment: 15 pages, 14 figures, 1 tabl

    Anti-lensing: the bright side of voids

    Get PDF
    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magni ca- tion e ect from those under-dense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard e ect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also signi cant nonlinear corrections to the relativistic linear theory, which we show actually under-predicts the e ect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of eld supernovae located on the edge of voids compared to those in clusters.Web of Scienc

    Redshift and distances in a {\Lambda}CDM cosmology with non-linear inhomogeneities

    Get PDF
    Motivated by the dawn of precision cosmology and the wealth of forthcoming high precision and volume galaxy surveys, in this paper we study the effects of inhomogeneities on light propagation in a flat \Lambda CDM background. To this end we use exact solutions of Einstein's equations (Meures & Bruni 2011) where, starting from small fluctuations, inhomogeneities arise from a standard growing mode and become non-linear. While the matter distribution in these models is necessarily idealised, there is still enough freedom to assume an arbitrary initial density profile along the line of sight. We can therefore model over-densities and voids of various sizes and distributions, e.g. single harmonic sinusoidal modes, coupled modes, and more general distributions in a \Lambda CDM background. Our models allow for an exact treatment of the light propagation problem, so that the results are unaffected by approximations and unambiguous. Along lines of sight with density inhomogeneities which average out on scales less than the Hubble radius, we find the distance redshift relation to diverge negligibly from the Friedmann-Lemaitre-Robertson-Walker (FLRW) result. On the contrary, if we observe along lines of sight which do not have the same average density as the background, we find large deviations from the FLRW distance redshift relation. Hence, a possibly large systematic might be introduced into the analysis of cosmological observations, e.g. supernovae, if we observe along lines of sight which are typically more or less dense than the average density of the Universe. In turn, this could lead to wrong parameter estimation: even if the Cosmological Principle is valid, the identification of the true FLRW background in an inhomogeneous universe maybe more difficult than usually assumed.Comment: 15 pages, 12 figures, published in MNRAS. Corrected typos, re-formatted figures, added references and slightly changed notation (r->z

    Exact nonlinear inhomogeneities in Λ\LambdaCDM cosmology

    Get PDF
    At a time when galaxy surveys and other observations are reaching unprecedented sky coverage and precision it seems timely to investigate the effects of general relativistic nonlinear dynamics on the growth of structures and on observations. Analytic inhomogeneous cosmological models are an indispensable way of investigating and understanding these effects in a simplified context. In this paper, we develop exact inhomogeneous solutions of general relativity with pressureless matter (dust, describing cold dark matter) and cosmological constant Λ\Lambda, which can be used to model an arbitrary initial matter distribution along one line of sight. In particular, we consider the second class Szekeres models with Λ\Lambda and split their dynamics into a flat Λ\LambdaCDM background and exact nonlinear inhomogeneities, obtaining several new results. One single metric function ZZ describes the deviation from the background. We show that FF, the time dependent part of ZZ, satisfies the familiar linear differential equation for δ\delta, the first-order density perturbation of dust, with the usual growing and decaying modes. In the limit of small perturbations, δ≈F\delta \approx F as expected, and the growth of inhomogeneities links up exactly with standard perturbation theory. We provide analytic expressions for the exact nonlinear δ\delta and the growth factor in our models. For the case of over-densities, we find that, depending on the initial conditions, the growing mode may or may not lead to a pancake singularity, analogous to a Zel'dovich pancake. This is in contrast with the Λ=0\Lambda=0 pure Einstein-de-Sitter background where, at any given point in comoving (Lagrangian) coordinates pancakes will always occur.Comment: 20 pages, 4 figures, some changes made in the text, 4 references added and Eqs. (46) and (C3) correcte
    corecore