83 research outputs found

    Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle

    Get PDF
    activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle. dependent Na,K-ATPase activity in rat muscle membranes, whereas similar treatments of human muscle membranes lowered the Na,K-ATPase activity. UTP incubation resulted in unchanged Na,K-ATPase activity in humans, but pre-incubation with the antagonist suramin resulted in inhibition with UTP, suggesting that P2Y receptors are involved. The Na,K-ATPase in membranes from both rat and human could be stimulated by protein kinase A and C activation. Thus, protein kinase A and C activation can increase Na,K-ATPase activity in human muscle but not via P2Y receptor stimulation. receptor).Rat muscle is not a reliable model for purinergic effects on Na,K-ATPase in human skeletal muscle

    Front crawl swimming analysis using accelerometers:A preliminary comparison between pool and flume

    Get PDF
    AbstractBiomechanical characteristics such as stroke rate and stroke length can be used to determine the velocity of a swimmer and can be analysed in both a swimming pool and a flume. The aim of the present preliminary study was to investigate the differences between the acceleration data collected from a swimming pool with that collected from a flume, as a function of the swimmer's stroke rate and stroke count, with the objective of identifying the impact on the swimmer's performance. The differences were determined by the analysis of the stroke's features, comparing several strokes normalized to one stroke count from an elite swimmer. Triaxial accelerometer logging using a sensor located in an arm band positioned immediately in the wrist was used to record the swimmer's stroke. There is statistical evidence that show that there are small differences between the pool and flume on medio-lateral wrist movements (0.64 < r < 0.75). The correlation coefficients are (0.75 < r < 0.83) and (0.82 < r < 0.89) for the other two axes

    Effects of 12 weeks high-intensity &amp; reduced-volume training in elite athletes

    Get PDF
    It was investigated if high-intensity interval training (HIT) at the expense of total training volume improves performance, maximal oxygen uptake and swimming economy. 41 elite swimmers were randomly allocated to a control (CON) or HIT group. For 12 weeks both groups trained ∼12 h per week. HIT comprised ∼5 h vs. 1 h and total distance was ∼17 km vs. 35 km per week for HIT and CON, respectively. HIT was performed as 6-10×10-30 s maximal effort interspersed by 2–4 minutes of rest. Performance of 100 m all-out freestyle and 200 m freestyle was similar before and after the intervention in both HIT (60.4±4.0 vs. 60.3±4.0 s; n = 13 and 133.2±6.4 vs. 132.6±7.7 s; n = 14) and CON (60.2±3.7 vs. 60.6±3.8 s; n = 15 and 133.5±7.0 vs. 133.3±7.6 s; n = 15). Maximal oxygen uptake during swimming was similar before and after the intervention in both the HIT (4.0±0.9 vs. 3.8±1.0 l O(2)×min(−1); n = 14) and CON (3.8±0.7 vs. 3.8±0.7 l O(2)×min(−1); n = 11) group. Oxygen uptake determined at fixed submaximal speed was not significantly affected in either group by the intervention. Body fat % tended to increase (P = 0.09) in the HIT group (15.4±1.6% vs. 16.3±1.6%; P = 0.09; n = 16) and increased (P<0.05) in the CON group (13.9±1.5% vs. 14.9±1.5%; n = 17). A distance reduction of 50% and a more than doubled HIT amount for 12 weeks did neither improve nor compromise performance or physiological capacity in elite swimmers

    High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension

    Get PDF
    To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n=21; HIT), moderate-intensity (n=21; MOD), and control groups (n=20; CON). HIT performed 6–10 × 30 s all-out swimming interspersed by 2 min recovery and MOD swam continuously for 1 h at moderate intensity for a 15-week period completing in total 44±1 and 43±1 sessions, respectively. In CON, all measured variables were similar before and after the intervention period. Systolic BP decreased (P<0.05) by 6±1 and 4±1 mmHg in HIT and MOD; respectively. Resting heart rate declined (P<0.05) by 5±1 bpm both in HIT and MOD, fat mass decreased (P<0.05) by 1.1±0.2 and 2.2±0.3 kg, respectively, while the blood lipid profile was unaltered. In HIT and MOD, performance improved (P<0.05) for a maximal 10 min swim (13±3% and 22±3%), interval swimming (23±3% and 8±3%), and Yo-Yo IE1 running performance (58±5% and 45±4%). In conclusion, high-intensity intermittent swimming is an effective training strategy to improve cardiovascular health and physical performance in sedentary women with mild hypertension. Adaptations are similar with high- and moderate-intensity training, despite markedly less total time spent and distance covered in the high-intensity group

    High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in <i>m. triceps brachii</i>

    Get PDF
    We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (

    Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers

    Get PDF
    BackgroundThe performance of elite breath hold divers (BHD) includes static breath hold for more than 11 minutes, swimming as far as 300 m, or going below 250 m in depth, all on a single breath of air. Diving mammals are adapted to sustain oxidative metabolism in hypoxic conditions through several metabolic adaptations, including improved capacity for oxygen transport and mitochondrial oxidative phosphorylation in skeletal muscle. It was hypothesized that similar adaptations characterized human BHD. Hence, the purpose of this study was to examine the capacity for oxidative metabolism in skeletal muscle of BHD compared to matched controls.MethodsBiopsies were obtained from the lateral vastus of the femoral muscle from 8 Danish BHD and 8 non-diving controls (Judo athletes) matched for morphometry and whole body VO2max. High resolution respirometry was used to determine mitochondrial respiratory capacity and leak respiration with simultaneous measurement of mitochondrial H2O2 emission. Maximal citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (HAD) activity were measured in muscle tissue homogenates. Western Blotting was used to determine protein contents of respiratory complex I-V subunits and myoglobin in muscle tissue lysates.ResultsMuscle biopsies of BHD revealed lower mitochondrial leak respiration and electron transfer system (ETS) capacity and higher H2O2 emission during leak respiration than controls, with no differences in enzyme activities (CS and HAD) or protein content of mitochondrial complex subunits myoglobin, myosin heavy chain isoforms, markers of glucose metabolism and antioxidant enzymes.ConclusionWe demonstrated for the first time in humans, that the skeletal muscles of BHD are characterized by lower mitochondrial oxygen consumption both during low leak and high (ETS) respiration than matched controls. This supports previous observations of diving mammals demonstrating a lower aerobic mitochondrial capacity of the skeletal muscles as an oxygen conserving adaptation during prolonged dives.</div

    Futsal match-related fatigue affects running performance and neuromuscular parameters but not finishing kick speed or accuracy

    Get PDF
    Purpose: The aim of the present study was to investigate the influence of futsal match-related fatigue on running performance, neuromuscular variables, and finishing kick speed and accuracy. Methods: Ten professional futsal players participated in the study (age: 22.2±2.5 years;) and initially performed an incremental protocol to determine maximum oxygen uptake (VO2max : 50.6±4.9 mL.kg-1.min-1). Next, simulated games were performed, in four periods of 10 min during which heart rate and blood lactate concentration were monitored. The entire games were video recorded for subsequent automatic tracking. Before and immediately after the simulated game, neuromuscular function was measured by maximal isometric force of knee extension, voluntary activation using twitch interpolation technique, and electromyographic activity. Before, at half time, and immediately after the simulated game, the athletes also performed a set of finishing kicks for ball speed and accuracy measurements. Results: Total distance covered (1st half: 1986.6±74.4 m; 2nd half: 1856.0±129.7 m – P=0.00) and distance covered per minute (1st half: 103.2±4.4 m.min-1; 2nd half: 96.4±7.5 m.min-1 – P=0.00) demonstrated significant declines during the simulated game, as well as maximal isometric force of knee extension (Before: 840.2±66.2 N; After: 751.6±114.3 N – P=0.04) and voluntary activation (Before: 85.9±7.5%; After: 74.1±12.3% – P=0.04), however ball speed and accuracy during the finishing kicks were not significantly affected.Conclusion: Therefore, we conclude that despite the decline in running performance and neuromuscular variables presenting an important manifestation of central fatigue, this condition apparently does not affect the speed and accuracy of finishing kicks
    • …
    corecore