
u n i ve r s i t y  o f  co pe n h ag e n  

Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold
divers

Kjeld, Thomas; Stride, Nis; Gudiksen, Anders; Hansen, Egon Godthaab; Arendrup, Henrik
Christian; Horstmann, Peter Frederik; Zerahn, Bo; Jensen, Lars Thorbjørn; Nordsborg, Nikolai
Baastrup; Bejder, Jacob; Halling, Jens Frey

Published in:
P L o S One

DOI:
10.1371/journal.pone.0201401

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Kjeld, T., Stride, N., Gudiksen, A., Hansen, E. G., Arendrup, H. C., Horstmann, P. F., ... Halling, J. F. (2018).
Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers. P L o S One, 13(9),
1-13. [e0201401]. https://doi.org/10.1371/journal.pone.0201401

Download date: 09. apr.. 2020

https://doi.org/10.1371/journal.pone.0201401
https://curis.ku.dk/portal/da/persons/anders-gudiksen(c606f51e-8e40-4c33-a459-45f96c93b102).html
https://curis.ku.dk/portal/da/persons/jens-frey-halling(8ff050ee-4eac-4e48-be9a-625f63d227b6).html
https://curis.ku.dk/portal/da/publications/oxygen-conserving-mitochondrial-adaptations-in-the-skeletal-muscles-of-breath-hold-divers(62c873b7-40f5-470b-a005-ed450d3588ac).html
https://doi.org/10.1371/journal.pone.0201401


RESEARCH ARTICLE

Oxygen conserving mitochondrial adaptations

in the skeletal muscles of breath hold divers

Thomas Kjeld1*, Nis Stride2, Anders Gudiksen3, Egon Godthaab Hansen1, Henrik

Christian Arendrup4, Peter Frederik Horstmann5, Bo Zerahn6, Lars Thorbjørn Jensen6,

Nikolai Nordsborg7, Jacob Bejder7, Jens Frey Halling3

1 Department of Anesthesiology, Herlev Hospital, Herlev, University of Copenhagen, Denmark,

2 Department of Cardiology, Rigshospitalet, Copenhagen, University of Copenhagen, Denmark,

3 Department of Biology, University of Copenhagen, Copenhagen, Denmark, 4 Department of

Cardiothoracic Surgery, Rigshospitalet, Copenhagen, University of Copenhagen, Denmark, 5 Department of

Ortopedic Surgery, Hillerød Hospital, Hillerød, University of Copenhagen, Denmark, 6 Department of Clinical

Physiology and Nuclear Medicine, Herlev Hospital, Herlev, University of Copenhagen, Denmark,

7 Department of Nutrition, Exercise and Sport (NEXS), Copenhagen, University of Copenhagen, Denmark

* thomaskjeld@dadlnet.dk

Abstract

Background

The performance of elite breath hold divers (BHD) includes static breath hold for more than

11 minutes, swimming as far as 300 m, or going below 250 m in depth, all on a single breath

of air. Diving mammals are adapted to sustain oxidative metabolism in hypoxic conditions

through several metabolic adaptations, including improved capacity for oxygen transport

and mitochondrial oxidative phosphorylation in skeletal muscle. It was hypothesized that

similar adaptations characterized human BHD. Hence, the purpose of this study was to

examine the capacity for oxidative metabolism in skeletal muscle of BHD compared to

matched controls.

Methods

Biopsies were obtained from the lateral vastus of the femoral muscle from 8 Danish BHD

and 8 non-diving controls (Judo athletes) matched for morphometry and whole body

VO2max. High resolution respirometry was used to determine mitochondrial respiratory

capacity and leak respiration with simultaneous measurement of mitochondrial H2O2 emis-

sion. Maximal citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (HAD) activity

were measured in muscle tissue homogenates. Western Blotting was used to determine

protein contents of respiratory complex I-V subunits and myoglobin in muscle tissue lysates.

Results

Muscle biopsies of BHD revealed lower mitochondrial leak respiration and electron transfer

system (ETS) capacity and higher H2O2 emission during leak respiration than controls, with

no differences in enzyme activities (CS and HAD) or protein content of mitochondrial com-

plex subunits myoglobin, myosin heavy chain isoforms, markers of glucose metabolism and

antioxidant enzymes.
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Conclusion

We demonstrated for the first time in humans, that the skeletal muscles of BHD are charac-

terized by lower mitochondrial oxygen consumption both during low leak and high (ETS)

respiration than matched controls. This supports previous observations of diving mammals

demonstrating a lower aerobic mitochondrial capacity of the skeletal muscles as an oxygen

conserving adaptation during prolonged dives.

Introduction

Diving mammals are adapted to sustained aerobic metabolism under hypoxic conditions,

and relative to comparable terrestrial mammals, skeletal muscles of pinnipeds (seals and sea

lions) have higher volume density of mitochondria [Vv(mt)] and correspondingly higher cit-

rate synthase (CS) activity, higher beta-hydroxyacyl CoA dehydrogenase (HAD) activity and

thus a higher capacity for fatty acid catabolism for aerobic ATP production [1]. Oxygen stor-

age and diffusion capacity is higher due to an increased myoglobin concentration and depen-

dency on blood-borne oxygen and metabolites is lower as indicated by a decreased capillary

density [1]. These adaptations may be speculated to result in higher mitochondrial respira-

tory capacity. However, the oxidative phosphorylation (OXPHOS) capacity of the northern

elephant seal (NES) muscle is generally lower than in humans [2], but the difference is leak

respiration in NES is less with lipid-based substrates (palmitoylcarnitine + malate) than with

pyruvate. This supports that a relatively low mitochondrial capacity with a preference for

lipid oxidation contributes to an improved diving performance. Together, these metabolic

features expand the animals dive capacity, while relying primarily on oxygen stored in blood

and muscle. Hence, these pinnipeds exhibit a distinct metabolic adaptation to their frequent

long dives that may serve to preserve oxygen for aerobic metabolism in heart, liver, kidneys,

gastrointestinal organs and skeletal muscle [1,3,4]. Mitochondrial biogenesis in human

skeletal muscle is highly plastic with one suggested regulator being tissue hypoxia [5] and it

could therefore be hypothesized that the same adaptive mechanisms are present in human

elite breath hold divers (BHD), who endure breath holds for more than 11 min, swimming

submerged as far as 300 m or going below 250 m in depth, all on a single breath of air (www.

aida.international.org).

Like other animals, humans possess a diving response that is initiated during apnea and

augmented with facial immersion in cold water [6–8]. The diving response includes peripheral

vasoconstriction, a reduced cardiac output (CO), bradycardia [9] and low muscle oxygenation,

whereas cerebral perfusion is augmented as hypercapnia develops [10–12]. At the end of a dry

breath hold, BHD demonstrates an augmented diving response, including attenuated post-

apnoea acidosis, decreased oxidative stress, and probably critical for their performance an

extreme tolerance for hypoxia and hypercapnia [7,8]. Also, plasma erythropoietin increases,

while BHD tolerate a ~33% reduction in frontal lobe oxygenation and a ~50% reduction in

muscle oxygenation [11,12]. However, it is currently unknown whether skeletal muscle of

trained human free divers exhibits mitochondrial adaptations that may contribute to the

enhanced diving response that allows the extreme performances by BHD.

Hence, the purpose of this study was to examine the capacity for oxidative metabolism in

skeletal muscle of BHD compared to matched controls. We postulated that, compared to

matched non-diving controls, skeletal muscle from human BHD would be characterized by

1) enhanced oxygen storage and diffusion capacity, 2) elevated mitochondrial density as

Mitochondrial adaptations in breath hold divers
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estimated by CS activity, 3) greater capacity for fatty-acid oxidation and mitochondrial oxida-

tive phosphorylation and 4) reduced mitochondrial emission of reactive oxygen species (ROS).

Methods

This research involving human participants have been approved by the Regional Ethics Com-

mittee of Copenhagen (H-1-2013-060). All clinical investigations have been conducted accord-

ing to the principles expressed in the Declaration of Helsinki. Informed consent, written and

oral, have been obtained from the participants.

16 healthy male non-smoking subjects participated in the study. 8 subjects were divers (age

42 ± 8 years) and for comparison were chosen 8 judo athletes matched for morphometric vari-

ables (age, height, weight, body mass) and whole-body aerobic capacity (VO2max).

All free divers ranked among national top 10, three of the participating free divers ranked

among World top 10 and one was a 2016 outdoor free-diving World champion, while one

reached third place at the same Championship (no limit depth competition), and one was a

World record holder.

VO2 max and dual-energy X-ray absorptiometry scan

Subjects completed a standardized warm-up followed by an incremental cycling test starting at

a workload of 150 W and increasing 25 W every minute until voluntary exhaustion. Pulmo-

nary O2 and CO2 concentrations in the expired gas were continuously measured breath-by-

breath (Quark, Cosmed, Rome, Italy) during the test. The highest recorded 30 s average oxy-

gen uptake (VO2) during the test was defined as VO2max. For recognition of true VO2max

three of five criterions had to be met: individual perception of exhaustion, respiratory

exchange ratio > 1.15, plateau of VO2 curve, heart rate approaching age-predicted maximum

and inability to maintain a pedaling frequency above 70 rpm. A dual-energy X-ray absorpti-

ometry scan (Lunar iDXA; Lunar, Madison, WI, USA) was performed to assess body composi-

tion (Table 1).

Muscle biopsies

Muscle biopsies were obtained in local anesthesia with lidocaine (5%) from the lateral vastus

of the femoral muscle a.m. Bergstroem [13]. One part of the biopsy was instantaneously sub-

merged into ice cold buffer solution, ‘BIOPS’ [14] containing buffer (50mM K-MES, 7.23mM

K2EGTA, 2.77mM CaK2EGTA, 20mM imidazole, 20mM taurine, 5.7mM ATP, 14.3mM phos-

phocreatine and 6.56mM MgCl2, pH 7.1) until preparation of permeabilized fiber bundles

(PmFB). Fiber bundles weighing 3-5mg were teased with fine forceps and permeabilized in

30 μg/mL saponin in BIOPS for 30 min at 5˚C. PmFBs were then washed in ice-cold mito-

chondrial respiration medium (MiR05: 0.5mM EGTA, 3mM MgCl2, 60mM lactobionate,

20mM taurine, 10mM KH2PO4, 20mM HEPES, 110mM D-sucrose, 1g/L BSA) for 30 min

before analysis. After each respiration protocol, PmFBs were extracted from the respiration

chamber and weighed after vacuum-drying. Another part of the biopsy was snap-frozen in liq-

uid N2 and stored at −80˚C for later assay of enzyme activities and protein content.

Mitochondrial respiration and H2O2 emission

High-resolution O2 consumption was measured in MiR05 in the Oxygraph-2k system (Oro-

boros Instruments, Innsbruck, Austria). Respiration measurements were performed in dupli-

cate at 37˚C with [O2] at *400–180μM. Briefly, Complex I supported leak respiration was

measured after addition of 5mM pyruvate, 10mM glutamate and 2mM malate. Maximal

Mitochondrial adaptations in breath hold divers
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Complex I supported oxidative phosphorylation (OXPHOS) capacity was measured after addi-

tion of ADP (4mM). Complex I+II supported OXPHOS capacity was measured after succinate

addition (10mM). Electron transfer system (ETS) capacity through Complex I+II was mea-

sured after sequential additions of 0.5μM FCCP. Finally, 1μM rotenone was added to inhibit

Complex I.

Emission of H2O2 (defined as H2O2 escaping the mitochondrial matrix) was measured

simultaneously with O2 consumption using the O2k-Fluo LED2-Module (Oroboros Instru-

ments, Innsbruck, Austria). Briefly, Horseradish peroxidase (4U/mL) and Amplex Red

(10μM) was added and the H2O2 mediated conversion of Amplex Red to resorufin was tracked

by excitation/emission at 565/600nm. Superoxide dismutase (30U/mL) was added to ensure

conversion of superoxide to H2O2.

Immunoblotting

Muscle lysates were made from freeze-dried human muscle biopsies dissected free of connec-

tive tissue, blood and visible fat. The tissue was homogenized in a ratio of 1:80 in lysis buffer

(10% glycerol, 20 mM Na-pyrophosphate, 150 mM NaCl, 50 mM HEPES, 1% NP-40, 20 mM

β-glycerophosphate, 10 mM NaF, 1 mM EDTA, 1 mM EGTA, 20 μg/ml aprotinin, 10 μg/ml

leupeptin, 2 mM Na3VO4, 3 mM benzamidine, and adjusted to pH 7.4) using a Tissue Lyser II

(Qiagen, Germany). Protein concentrations were determined using the bicinchoninic acid

method (Thermo Fischer Scientific, USA) and were adjusted with sample buffer to a concen-

tration of 1μg/μl for each sample. Specific protein content of OXPHOS (Abcam/ab110413)

GLUT4 (Thermo-Fisher/ PA1-1065), Hexokinase II (HKII) (Cell Signaling/#2867), Catalase

(Santa Cruz/50508), SOD2 (Abcam/74231), pyruvate dehydrogenase subunit E1α (PDH-E1α)

(Prof. Graham Hardie, University of Dundee, Dundee, Scotland) and myoglobin (Abcam/

Table 1. Subject characteristics.

Controls Divers

No. subjects 8 males 8 males

Age (years) 36 ± 11 42 ± 8

Height (cm) 183 ± 4 183 ± 6

Weight (kg) 82 ± 6 79 ± 6

Body Surface area (Mosteller, m2) 2.0 ± 0.1 2.0 ± 0.1

Body Mass Index (kg/m2) 23.6 ± 1.2 24.3 ± 1.5

Fat mass % 15.4 ± 6.2 20.2 ± 4.2

Bone Mineral Content (kg) 3.7 ± 0.4 3.1 ± 0.2 �

Fat (kg) 12.7 ± 6.0 15.9 ± 3.7

Fat free mass (kg) 66.3 ± 3.9 60.9 ± 5.2 �

Bone Mineral Density (kg/m2) 1.4 ± 0.1 1.3 ± 0.1 �

T/Z-score 2.3 ± 0.8 0.6 ± 0.8 �

Maximal oxygen uptake (ml O2/min) 4018 ± 398 3676 ± 503

Capillary Hemoglobin (g/dl) 15.3 ± 0.8 15.2 ± 0.8

Venous Hemoglobin (calculated [17], g/dl) 14.7 ± 0.7 14.6 ± 0.7

Static personal best (seconds) N/A 403 ± 62

Dynamic pool personal best (meters) N/A 163 ± 36

Dynamic pool no fins personal best (meters) N/A 133± 37

Basic morphometric data. Values are mean ± SD.

� P < 0.05

https://doi.org/10.1371/journal.pone.0201401.t001
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ab77232) were determined by SDS-PAGE using hand casted gels and western blotting. PVDF

membranes were incubated in primary antibody overnight at 4˚C. Species-specific horseradish

peroxidase conjugated immunoglobulin secondary antibodies (DAKO, Denmark) were used

for incubation the following day. Protein bands were subsequently visualized using an Image-

Quant LAS 4000 imaging system and quantified with ImageQuant TL 8.1 software (GE

Healthcare, Germany).

Myosin heavy chain determination

Myosin heavy chain (MHC) composition of the m. vastus lateralis muscle was determined

from muscle homogenate using gel electrophoresis as described previously [15]. In brief, mus-

cle homogenates were diluted with 6×Laemmli sample-buffer (7 ml 0.5 M Tris-base, 3 ml glyc-

erol, 0.93 g DTT, 1 g SDS and 1.2 mg bromophenol blue) and 100% glycerol (50/50). A total of

1 μg of protein was separated on 8% self-cast stain free gels (49:1 acrylmid: bis-acrylmid, 30%

glycerol, 200 mM Tris-base, 0.4% SDS, 0.1% APS and 0.1 M glycine) containing 0.5% 2,2,2 Tri-

chloroethanol [16] for 16 h at 140 V on ice. MHC protein bands were visualized by ultraviolet

activation of the stain free gel (ChemiDoc MP Imaging System) and were quantified densito-

metrically using imaging software (Image Lab v. 4.0, Bio-Rad Laboratories, Hercules, CA, US).

Enzyme activities

Maximal CS activity was measured in triplicates spectrophotometrically following the protocol

of the manufacturer (CS0720, Sigma Aldrich, Germany). 3-hydroxyacyl-CoA dehydrogenase

activity was determined in triplicates kinetically by measuring fluorescence (excitation 355nm/

emission 460nm; Fluoroscan, Thermo Scientific, USA)) after addition of acetoacetyl CoA as

previously described (Lowry OH, Passonneau JV. A Flexible System of Enzymatic analysis.

London: Academic, 1972). CS and HAD activities were normalized to muscle weight.

Statistics

Data were analyzed using a One-way ANOVA. Holm Sidak method was used to evaluate dif-

ferences between the two groups of subjects. A P-value < 0.05 was considered statistically

significant.

Results

VO2 max and dual-energy X-ray absorptiometry scan

The divers were characterized by ~16% lower bone mineral content (divers 3.1 ± 0.2 kg vs.

controls 3.7 ± 0.4 kg, P <0.05) and ~ 9% lower fat free mass (divers 60.9 ± 5.2 vs. controls

66.3 ± 3.9, P<0.05) than controls (Table 1).

Respirometry

Complex I leak capacity was ~22% lower in divers than in controls in divers (16.6 ± 3.3 vs. con-

trols 26.8 ± 3.2, P<0.05), and similarly maximal ETS Complex I+II capacity were ~ 23% lower

in divers than in controls, (divers 251.1 ± 14.4 vs. controls 326.2 ± 25.5, P = 0.006) (Fig 1).

Results for mitochondrial respiration and H2O2 emission were not significantly different

between the two groups, however, during Complex I-linked leak respiration (without ADP

present) the mitochondrial emission of H2O2 normalized to O2 consumption tended to be

higher (p = 0.051) in permeabilized muscle fibers from free-divers compared with controls

(Fig 2).

Mitochondrial adaptations in breath hold divers

PLOS ONE | https://doi.org/10.1371/journal.pone.0201401 September 19, 2018 5 / 13

https://doi.org/10.1371/journal.pone.0201401


OXPHOS, myoglobin and CS and HAD activities

OXPHOS protein content, Myoglobin protein content, and CS and HAD activities were not

significantly different between the two groups:

Specific content of OXPHOS CI (NDUFB8 = NADH dehydrogenase [ubiquinone] 1 beta

subcomplex subunit 8) in divers 1.0 ± 0.1 and in controls 1.0 ± 0.1, CII (SDHB = Succinate

dehydrogenase [ubiquinone] iron-sulfur subunit) in divers 1.0 ± 0.1 and in controls 1.0 ± 0.1,

CIII (UQCRC2 = ubiquinol-cytochrome c reductase complex) in divers 0.9 ± 0.1 and in con-

trols 1.0 ± 0.1, CIV (MTCOI = mitochondrial cytochrome oxidase I) in divers 0.9 ± 0.1 and in

controls 1.0 ± 0.2, and CV (ATP5A = ATP synthase subunit alpha) in divers 0.9 ± 0.1 and in

controls 1.0 ± 0.1.

Specific content of myoglobin in divers 1.00 ± 0.03 and in controls 1.00 ± 0.03.

Fig 1. Respiratory flux. PMG (Pyruvate, Malate, Glutamate) divers 16.6 ± 3.3 vs. controls 26.8 ± 3.2, P<0.05. ADP

Adenosine Di-Phosphate) divers 92.9 ± 10.3 vs. controls 127.2 ± 26.5. Succ (Succinate) divers 193.8 ± 21.1 vs. controls

247.0 ± 34.7, FCCP (Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) divers 251.1 ± 14.4 vs. controls

326.2 ± 25.5, P = 0.006. Rot (Rotenone) divers 126.5 ± 16.1 vs. controls 161.5 ± 15.4. � P<0.05.

https://doi.org/10.1371/journal.pone.0201401.g001

Fig 2. A-C. JH2O2/JO2 (Mitochondrial respiratory function / Hydrogen Peroxide Emission. (A) Leak Complex I

Divers 0.12 ± 0.05 vs. Controls 0.04 ± 0.007, P = 0.051. (B) Complex I+II Divers 0.008 ± 0.003 vs. Controls

0.007 ± 0.002. (C) Rotenone Divers 0.011 ± 0.003 vs. Controls 0.009 ± 0.007.

https://doi.org/10.1371/journal.pone.0201401.g002
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Maximal CS (citrate synthase) activity in divers 103.9 ± 10.0 and in controls 98,0 ± 8.4

and HAD (3-hydroxyacyl CoA dehydrogenase) activity in divers 10.0 ± 2.0 and in controls

8.8 ± 2.0 (Fig 3).

Glucose metabolism and antioxidant enzymes

Protein contents were measured as markers of the capacity for glucose metabolism through

glycolysis and results were similar in free divers and controls:

GLUT4 (divers 1.11 ± 0.09 vs. controls 0.86 ± 0.17), HKII (divers 0.83 ± 0.23 vs. controls

1.30 ± 0.44) and PDH-E1α (divers 2.47 ± 0.49 vs. controls 2.20 ± 0.72) were similar in divers

and controls. In addition, protein content of superoxide dismutase (SOD2) (divers 2.49 ± 0.76

vs. controls 2.35 ± 1.26) and Catalase (divers 0.91 ± 0.18 vs. controls 1.05 ± 0.15) were measured

as markers of mitochondrial and cytosolic antioxidant capacity, respectively. However, no dif-

ference in antioxidant capacity was observed between free divers and controls (Fig 4).

Fig 3. A-D. OXPHOS, Myoglobin and HAD activities. (A) Specific content of OXPHOS CI (NDUFB8 = NADH

dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8) divers 1.0 ± 0.1 vs controls 1.0 ± 0.1, CII

(SDHB = Succinate dehydrogenase [ubiquinone] iron-sulfur subunit) divers 1.0 ± 0.1 vs controls 1.0 ± 0.1, CIII

(UQCRC2 = ubiquinol-cytochrome c reductase complex) divers 0.9 ± 0.1 vs controls 1.0 ± 0.1, CIV

(MTCOI = mitochondrial cytochrome oxidase I) divers 0.9 ± 0.1 vs controls 1.0 ± 0.2, CV (ATP5A = ATP synthase

subunit alpha) divers 0.9 ± 0.1 vs controls 1.0 ± 0.1. (B) Specific content of myoglobin divers 1.00 ± 0.03 vs. controls

1.00 ± 0.03. (C) SDS-page and western blot for determination of myoglobin. (D) Maximal CS (citrate synthase) activity

divers 103.9 ± 10.0 vs. controls 98,0 ± 8.4 and HAD (3-hydroxyacyl CoA dehydrogenase) activity divers 10.0 ± 2.0 vs.

controls 8.8 ± 2.0.

https://doi.org/10.1371/journal.pone.0201401.g003

Fig 4. A-C. Glucose metabolism and antioxidant enzymes. (A) Glucose metabolism: GLUT4 (divers 1.11 ± 0.09 vs.

controls 0.86 ± 0.17), HKII (divers 0.83 ± 0.23 vs. controls 1.30 ± 0.44) and PDH-E1α (divers 2.47 ± 0.49 vs. controls

2.20 ± 0.72). (B) Antioxidant enzymes: protein content of superoxide dismutase (SOD2) (divers 2.49 ± 0.76 vs. controls

2.35 ± 1.26) and Catalase (divers 0.91 ± 0.18 vs. controls 1.05 ± 0.15). (C) SDS-page and western blot for determination

of proteins mentioned above.

https://doi.org/10.1371/journal.pone.0201401.g004
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Myosin heavy chain

The relative distribution of MHCI and MHCII isoforms in m. vastus lateralis were similar in free

divers (60±11% and 40±11%, respectively) and controls (58±15% and 42±15%, respectively).

Discussion

The main findings of the present study are that permeabilized skeletal muscle fibers from com-

petitive free divers had lower capacity for mitochondrial oxygen consumption both during

non-phosphorylating (leak) and uncoupled (ETS) respiration than muscle fibers from

matched controls (Fig 1). Free divers also tended to display higher ROS emission during leak

respiration (Fig 2). This was observed independently of differences in protein content of

OXPHOS subunits as well as CS and HAD activities (Fig 3), suggesting that human competi-

tive free divers are characterized by lower intrinsic mitochondrial function. This has to our

knowledge not previously been described.

BHD are characterized by a significant diving response, attenuated post-apnoea acidosis,

oxidative stress and, a reduced sensitivity to hypoxia and hypercapnia [7,8,10], beyond the lim-

its of consciousness and organ damage in non-adapted humans. Weeks of apnea training in

untrained subjects can improve the diving response, with an increased apnea time and a pro-

nounced bradycardia [8]. The present findings indicate that adaptations in favor of reduced

skeletal muscle mitochondrial oxygen consumption contributes to the augmented diving

response with reduced sensitivity to post-apnoea acidosis and oxidative stress as observed in

BHD.

Chicco et al demonstrated that, permeabilized muscle fibers of adult northern elephant

seals (NES) exhibit lower mitochondrial oxidative capacity than non-diving humans. How-

ever, the ratio of lipid versus pyruvate/malate supported respiration was comparably higher in

NES than in human muscle [2], suggesting higher relative capacity for fat oxidation in diving

seals. This was interpreted as an adaptation allowing lower skeletal muscle oxygen extraction

during dives, which would increase the dive limit by saving the limited oxygen stores for the

most central organs [2]. Adult seals also seem to have a higher relative capacity for leak respira-

tion than pups and juvenile seals as well as humans, which was hypothesized to facilitate ther-

moregulation during deep dives where temperatures are highly variable [2]. The present

finding that mitochondrial respiratory capacity was lower in free divers than controls (Fig 1),

independently of differences in markers of mitochondrial content, CS activity, and protein

content of respiratory complex subunits (Fig 3), suggests that intrinsic functional characteris-

tics of mitochondrial respiration contribute to save oxygen and thus improve diving perfor-

mance in human free divers. Summarized the findings in our study indicates that adaptations

in favor of reduced skeletal muscle mitochondrial oxygen consumption contributes to the aug-

mented diving response with reduced sensitivity to post-apnoea acidosis and oxidative stress

as observed in elite breath hold divers.

The peripheral vasoconstriction induced as part of the diving reflex greatly reduces convec-

tive oxygen delivery. Therefore, the capacity for myoglobin-mediated oxygen diffusion into

skeletal muscle during hypoxia may be essential for maintaining muscle oxygenation during

long dives. Accordingly, it has been shown that skeletal muscles of adult Weddell seals possess

8-13-fold higher myoglobin concentration compared with dog hindlimb muscle [1]. There-

fore, we hypothesized that higher skeletal muscle myoglobin content would facilitate improved

oxygen storage and diffusion capacity in BHD compared with controls. However, the similar-

ity in myoglobin content observed in the BHD and controls (Fig 3), suggests that myoglobin-

mediated peripheral oxygen storage and diffusion capacity does not contribute to diving

performance in humans. Interestingly, modelling aerobic dive limits of seals at different
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myoglobin concentrations showed that increased myoglobin content may not necessarily

increase the dive capacity, as convective and diffusive oxygen transport is matched and opti-

mized for diving [18]. Monitoring the ontogeny of Weddell seals revealed that adult seals

unexpectedly have lower muscular myoglobin concentration than juvenile seals, which are not

yet fully matured and adapted to long dives [4]. Together, experimental evidence from diving

mammals suggests that adaptations leading to reduced skeletal muscle oxygen storage and dif-

fusion capacity is associated with improved diving performance. However, the present results

suggest that changes in myoglobin content do not contribute to diving performance in com-

petitive human free divers.

An interesting previous observation is that although lipid oxidation is less efficient in ener-

getic terms, OXPHOS capacity of NES muscle with lipids is ~ 75% of that in human muscle,

whereas pyruvate/malate/succinate-linked OXPHOS capacity is only ~ 43% of that in human

muscle. Together with other similar observations, this has led to the notion, that diving mam-

mals predominantly use lipid metabolism for muscle ATP production [3,4]. It has been shown

that myoglobin can bind and transport fatty acids and thus regulate myocellular substrate utili-

zation [19]. This provides a possible link between the paradoxical apparent preference for lipid

oxidation in diving mammals: various species of diving seals have comparably high myoglobin

levels [1,20,21]. However, in the present study there was no evidence pointing towards a pref-

erence for fatty acid oxidation in skeletal muscle from BHD, as indicated by myoglobin con-

tent and HAD activity.

During a long breath hold or dive, skeletal muscles become hypoxic followed by reperfusion

with the next breath of air. Tissue hypoxia, or in its extreme, ischemia, is well known to cause

harmful oxidative damage, due to bursts in ROS emission from mitochondria [22]. Interest-

ingly, although diving seals habitually undergo repeated ischemia/reperfusion events when

diving, they do not display indications of oxidative tissue damage [3,23,24]. Because previous

studies have demonstrated that skeletal muscle mitochondria of diving animals displayed

marked adaptations, they might be associated with reduced ROS emission, which could

explain the apparent protection against oxidative damage. In our study we observed that abso-

lute levels of H2O2 emission were similar in controls and BHD (data not shown). Surprisingly,

when normalizing for oxygen consumption, H2O2 emission tended to be higher in free divers

than controls during leak respiration (P = 0.051, Fig 2). Mitochondrial ROS emission is most

pronounced during non-phosphorylating conditions with high substrate supply, because

electron transport becomes blocked when protons are not allowed to pass through the ATP

synthase [25]. The higher rate of mitochondrial H2O2 emission in free divers was only appar-

ent under non-phosphorylating conditions (Fig 2), which is consistent with the finding that

free divers also exhibited lower capacity for leak respiration (Fig 1). Therefore, the observed

reduced capacity for mitochondrial oxygen consumption, that may contribute to improve div-

ing performance in BHD, simultaneously leads to increased ROS emission. Animals that rou-

tinely face high changes in oxygen availability and/or consumption seem to show a general

strategy to prevent oxidative damage by having either appropriate high constitutive antioxi-

dant defenses and/or the ability to undergo arrested states, where depressed metabolic rates

minimize the oxidative challenge [26]. Hence, to avoid exposure of tissues to changing high

oxygen levels, and therefore to avoid an oxidative stress condition related to antioxidant

consumption and increased ROS generation, diving mammals possess constitutive high

levels of antioxidants in tissues. Ringed seal muscle, can be induced in vitro to generate

ROS [24]. This suggests that the protective mechanisms of living seals depend on O(2)(.-) pro-

duction, (similar to the protective effect of experimental preconditioning) [23]. Hence, the

present study of BHD confirms the findings of increased ROS emission in skeletal muscles as

observed in diving mammals. This has to our knowledge never previously been demonstrated.
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Diving mammals have, in general, higher antioxidant capacities compared to non-diving

mammals [26], and in rodents this has been shown in muskrats (Ondatra zibethicus), a semi-

aquatic rodent, which exhibits a higher superoxide dismutase activity in almost all tissues com-

pared to beaver (Castor fiber) and nutria (Myocastor coypus) [27]. Bulmer et al. demonstrated

that trained free divers have increased erythrocyte superoxide dismutase activity during apnea,

but only a small difference in their antioxidant and oxidative stress responses compared with

controls [28]. In our study, no significant differences in antioxidant enzyme content or activity

were found in the skeletal muscle between the two groups.

Expression of GLUT4, which facilities uptake of circulating glucose into skeletal muscle,

and expression of the glycolytic enzyme hexokinase II, playing important role in glucose

metabolism, were not different between the two groups (Fig 4). In addition, PDH-E1α content

was similar in BHD and controls (Fig 4), together suggesting that the capacity for glycolysis

and linking glycolytic and mitochondrial metabolism is not altered in BHD.

Phosphofructokinase also play an important role in (muscle) glucose metabolism and fruc-

tose-driven glycolytic respiration in naked mole-rat tissues were recently discovered in vitro to

avoid feedback inhibition of glycolysis via phosphofructokinase, a possible mechanism con-

cluded could be harnessed in minimizing hypoxic damage in human disease [29], However,

our study demonstrates an actual human adaption to hypoxia.

The observation that the BHD in the present study had lower fat free mass than controls,

indicates a lower oxygen demand per kilogram body weight in the divers than the control.

Moreover, the lower BMD in the divers than the controls in the current study is in line with

studies, demonstrating that BMD of divers and swimmers tends to be lower than in non-div-

ing controls [30]. This may be caused by the weight-supported environment in the water,

exerting an effect that reduces BMD [31] proportionately to the time spent in the water [32].

In conclusion, the present study demonstrates for the first time, that the skeletal muscles of

BHD are characterized by lower mitochondrial oxygen consumption both during low leak and

high (ETS) respiration than matched controls. This supports previous observations of diving

mammals demonstrating a lower aerobic mitochondrial capacity of the skeletal muscles,

reflecting their energy-conserving modes of locomotion as an oxygen conserving adaption

during prolonged dives.
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