7 research outputs found

    Exploring the effect of occurrence-bias-adjustment assumptions on hydrological impact modeling

    Get PDF
    Bias adjustment of climate model simulations is a common step in the climate impact assessment modeling chain. For precipitation intensity, multiple bias-adjusting methods have been developed, but less so for precipitation occurrence. Intensity-bias-adjusting methods such as ‘Quantile Delta Mapping’ can adjust too many wet days, but not too many dry days. Some occurrence-bias-adjusting methods have been developed to resolve this by the addition of the ability to adjust too dry simulations. Earlier research has shown this to be important when adjusting on a continental scale, when both types of biases can occur. However, the newer occurrence-bias-adjusting methods have their weakness: they might retain a bias in the number of dry days when adjusting data in a region that only has too many wet days. Yet, if this bias is small enough, it is more practical and economical to apply the newer methods when data in the larger region are adjusted. In this study, we consider two recently introduced occurrence-bias-adjusting methods, Singularity Stochastic Removal and Triangular Distribution Adjustment, and compare them in a region with only wet-day biases. This bias adjustment is performed for precipitation intensity and precipitation occurrence, while the evaluation is performed on precipitation intensity, precipitation occurrence and discharge, which combines the former two variables. Despite theoretical weaknesses, we show that both Singularity Stochastic Removal and Triangular Distribution Adjustment perform well. Thus, the methods can be applied for both too wet and too dry simulations, although Triangular Distribution Adjustment may be preferred as it was designed with a broad application in mind.</jats:p

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme

    Future multivariate weather generation by combining Bartlett-Lewis and vine copula models

    No full text
    The assessment of future extremes is hindered by the lack of long time series. Weather generators can alleviate this problem, but easily become complex. In this study, a weather generator combining Bartlett-Lewis models and vine copulas is presented. This combination allows for the generation of time series with statistics similar to those of the input. This model chain has never been assessed on the basis of future simulations. However, it could have value for extending climate simulations. The model chain was applied to historical observations and one climate model time series. The statistical moments and the correlation on the basis of the future simulations were comparable to those on basis of the historical observations. The results for the extremes were ambiguous, but still provided valuable information. The adequate performance for the statistical moments and the correlation indicates that the weather generator might be useful for the characterization of future extremes

    Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods : a case study on data from Uccle, Belgium

    No full text
    Climate change is one of the biggest challenges currently faced by society, with an impact on many systems, such as the hydrological cycle. To assess this impact in a local context, regional climate model (RCM) simulations are often used as input for rainfall-runoff models. However, RCM results are still biased with respect to the observations. Many methods have been developed to adjust these biases, but only during the last few years, methods to adjust biases that account for the correlation between the variables have been proposed. This correlation adjustment is especially important for compound event impact analysis. As an illustration, a hydrological impact assessment exercise is used here, as hydrological models often need multiple locally unbiased input variables to ensure an unbiased output. However, it has been suggested that multivariate bias-adjusting methods may perform poorly under climate change conditions because of bias nonstationarity. In this study, two univariate and four multivariate bias-adjusting methods are compared with respect to their performance under climate change conditions. To this end, a case study is performed using data from the Royal Meteorological Institute of Belgium, located in Uccle. The methods are calibrated in the late 20th century (19701989) and validated in the early 21st century (1998-2017), in which the effect of climate change is already visible. The variables adjusted are precipitation, evaporation and temperature, of which the former two are used as input for a rainfall-runoff model, to allow for the validation of the methods on discharge. Although not used for discharge modeling, temperature is a commonly adjusted variable in both uni- and multivariate settings and we therefore also included this variable. The methods are evaluated using indices based on the adjusted variables, the temporal structure, and the multivariate correlation. The Perkins skill score is used to evaluate the full probability density function (PDF). The results show a clear impact of nonstationarity on the bias adjustment. However, the impact varies depending on season and variable: the impact is most visible for precipitation in winter and summer. All methods respond similarly to the bias nonstationarity, with increased biases after adjustment in the validation period in comparison with the calibration period. This should be accounted for in impact models: incorrectly adjusted inputs or forcings will lead to predicted discharges that are biased as well

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text
    corecore