9 research outputs found

    Generalizability of machine learning models in predicting patient deterioration

    Get PDF
    Predicting patient deterioration in an Intensive Care Unit (ICU) effectively is a critical health care task serving patient health and resource allocation. At times, the task may be highly complex for a physician, yet high-stakes and time-critical decisions need to be made based on it. In this work, we investigate the ability of a set of machine learning models to algorithimically predict future occurrence of in hospital death based on Electronic Health Record (EHR) data of ICU-patients. For one, we will assess the generalizability of the models. We do this by evaluating the models on hospitals the data of which has not been considered when training the models. For another, we consider the case in which we have access to some EHR data for the patients treated at a hospital of interest. In this setting, we assess how EHR data from other hospitals can be used in the optimal way to improve the prediction accuracy. This study is important for the deployment and integration of such predictive models in practice, e.g., for real-time algorithmic deterioration prediction for clinical decision support. In order to address these questions, we use the eICU collaborative research database, which is a database containing EHRs of patients treated at a heterogeneous collection of hospitals in the United States. In this work, we use the patient demographics, vital signs and Glasgow coma score as the predictors. We devise and describe three computational experiments to test the generalization in different ways. The used models are the random forest, gradient boosted trees and long short-term memory network. In our first experiment concerning the generalization, we show that, with the chosen limited set of predictors, the models generalize reasonably across hospitals but that only a small data mismatch is observed. Moreover, with this setting, our second experiment shows that the model performance does not significantly improve when increasing the heterogeneity of the training set. Given these observations, our third experiment shows tha

    The Kadanoff-Baym approach to spectral properties of the Holstein dimer

    Get PDF
    We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time- dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system

    Ground state properties of the Holstein dimer

    Get PDF
    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron- phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron- phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron- phonon interaction

    Many-body Green's function theory for electron-phonon interactions: the Kadanoff-Baym approach to spectral properties of the Holstein dimer

    Full text link
    We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state, and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Ref. [arXiv:1403.2968]. We show that choosing a homogeneous ground state solution leads to unstable dynamics for a sufficiently strong interaction, and that allowing a symmetry-broken state prevents this. The instability is caused by the bifurcation of the ground state and understood physically to be connected with the bipolaronic crossover of the exact system. This mean-field instability persists in the partially self-consistent Born approximation but is not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This functions amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid, and how they fail to describe the studied exact properties of the chosen model system.Comment: 12 figure

    Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems

    No full text
    In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and phonons is reviewed. In particular, the electron propagator G and an unconventional two-component phonon propagator, which satisfy coupled integral Dyson equations, are introduced. In practice, the associated integral kernels known as the electron Σ and phonon self-energies need to be approximated. The conserving approximations known as the Hartree (-Fock) and the first and second Born approximations, which respect the continuity equation between the electron density and current, are considered in this work. Time-dependent systems of interest are studied in this thesis by using the integro-differential forms of the Dyson equations referred to as the Kadanoff-Baym Equations (KBE). The Kadanoff-Baym equations are introduced for the electron and phonon propagators unconventionally as coupled firstorder integro-differential equations. It is reviewed how these equations are solved numerically by describing an integration rule, a class of practical methods and a parallel implementation of the numerical method. In addition, documentation of how the Kadanoff-Baym equations allow to solve the Bethe-Salpeter Equation (BSE) with the kernel δΣ/δG for the density response function, is provided. In two of the enclosed publications, we benchmarked observables obtained by using the Hartree and partially and fully self-consistent Born approximations against numerically exact results for the two- site, two-electron Holstein model. In this model, the two electrons which are constrained to move between two lattice sites interact indirectly via the electron-phonon coupling. It was observed that only the fully self-consistent Born approximation could cope qualitatively correctly with the competition between the delocalizing and localizing effects of the kinetic and interaction energies. For the other two approximations, spurious bifurcative symmetry breaking with an associated unbounded density response was observed. Nevertheless, also the self-consistent Born approximation was concluded to fail in describing the bipolaronic behavior of the true system. In the third publication, we benchmarked the Hartree-Fock and second Born approximations against an exact method for the few-site Hubbard and Pariser-Parr-Pople models in which the underlying lattice is inert and the electrons interact amongst themselves directly. It was found that the second Born approximation is capable of describing the so-called correlation induced doubly-excited states. This is not possible for time-local approximations such as Hartree-Fock. In addition to the qualitative results, which highlight successes of the applied simple self-energy approximations, the approximate and exact results were also compared on a more quantitative level. It is the quantitative and qualitative results combined which are used in this thesis to assess the quality of the many-body approximations used, with the aim to better understand when these methods are predictive

    Phononic heat transport in the transient regime: An analytic solution

    No full text
    We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green’s function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym equations for the Green’s function. We find good agreement between the analytic and numerical solutions for weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high temperature gradients.peerReviewe
    corecore