159 research outputs found

    Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    Get PDF
    Before particulate matter that settles as ‘primary flux’ from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change

    An abyssal hill fractionates organic and inorganic matter in deep-sea surface sediments

    Get PDF
    Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention

    Deglacial and Holocene sea-ice and climate dynamics in the Bransfield Strait, northern Antarctic Peninsula

    Get PDF
    The reconstruction of past sea-ice distribution in the Southern Ocean is crucial for an improved understanding of ice-ocean-Atmosphere feedbacks and the evaluation of Earth system and Antarctic ice sheet models. The Antarctic Peninsula (AP) has been experiencing a warming since the start of regular monitoring of the atmospheric temperature in the 1950s. The associated decrease in sea-ice cover contrasts the trend of growing sea-ice extent in East Antarctica. To reveal the long-Term sea-ice history at the northern Antarctic Peninsula (NAP) under changing climate conditions, we examined a marine sediment core from the eastern basin of the Bransfield Strait covering the last Deglacial and the Holocene. For sea-ice reconstructions, we focused on the specific sea-ice biomarker lipid IPSO25, a highly branched isoprenoid (HBI), and sea-ice diatoms, whereas a phytoplankton-derived HBI triene (C25:3) and warmer open-ocean diatom assemblages reflect predominantly ice-free conditions. We further reconstruct ocean temperatures using glycerol dialkyl glycerol tetraethers (GDGTs) and diatom assemblages and compare our sea-ice and temperature records with published marine sediment and ice core data. A maximum ice cover is observed during the Antarctic Cold Reversal 13ĝ€¯800-13ĝ€¯000 years before present (13.8-13ĝ€¯ka), while seasonally ice-free conditions permitting (summer) phytoplankton productivity are reconstructed for the late Deglacial and the Early Holocene from 13 to 8.3ĝ€¯ka. An overall decreasing sea-ice trend throughout the Middle Holocene coincides with summer ocean warming and increasing phytoplankton productivity. The Late Holocene is characterized by highly variable winter sea-ice concentrations and a sustained decline in the duration and/or concentration of spring sea ice. Overall diverging trends in GDGT-based TEX86L and RI-OH' subsurface ocean temperatures (SOTs) are found to be linked to opposing spring and summer insolation trends, respectively.Financial support was provided through the Helmholtz Research grant no. VH-NG-1101. Partial support from the centres IDEAL (grant no. FONDAP 15150003) and COPAS (grant nos. AFB170006 and FB210021), Chile, and the Spanish Ministry of Economy, Industry and Competitivity grant no. CTM2017-89711-C2--P, co-funded by the European Union through FEDER funds, is acknowledged. The article processing charges for this open-access publication were covered by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI)

    Short Cruise Report MARIA S. MERIAN MSM 17/3 Project: GENUS Walvis Bay - (Walvis Bay) - Dakar 30.01.2011 - 07.03.2011

    Get PDF

    5. Wochenbericht SO283

    No full text
    FS SONNE SO283 "Mooring Rescue" Emden - Emden, 19.03. - 25.05.2021 5. Wochenbericht 12. - 18.04.202
    corecore