9 research outputs found

    Supplementary Material for: Tissue Transglutaminase, Not Lysyl Oxidase, Dominates Early Calcium-Dependent Remodeling of Fibroblast-Populated Collagen Lattices

    No full text
    Cell-populated collagen gels have provided significant insight into the cellular contractile mechanisms and cell-matrix interactions that are necessary for compacting and remodeling extant matrix. Nevertheless, little research has been devoted towards determining how cells entrench these deformations that contribute to establishing a preferred mechanical state. To this end, we examined the roles of two covalent matrix cross-linkers, i.e. tissue transglutaminase and lysyl oxidase, during global remodeling of the free-floating fibroblast-populated collagen lattice. Inhibition of tissue transglutaminase resulted in a reduced rate of compaction compared to controls during early remodeling (up to 2 days). In contrast, inhibition of lysyl oxidase did not alter the early compaction of these lattices, but it reduced the compaction after 2 days of culture. Acute inhibition of different contractile mechanisms suggested further that calcium-dependent contractility may have dominated during the initial remodeling of the collagen lattice before giving way to calcium-independent contractility at later times. In summary, these findings suggest that early remodeling of the free-floating collagen lattice is facilitated by calcium-dependent cell contraction while entrenchment is dominated by a tissue transglutaminase-mediated cross-linking of the extant matrix. As remodeling continues, however, lysyl oxidase increases its contribution, perhaps by consolidating de novo collagen fibrils into fibers to continue the remodeling while the cells transition to a more sustained, calcium-independent contractility. These results promise to influence future tissue engineering studies as well as computational simulations aimed at understanding matrix remodeling in complex in vivo situations

    In vitro heart valve tissue engineering

    Get PDF
    Heart valve replacement represents the most common surgical therapy for end-stage valvular heart diseases. A major drawback all contemporary heart valve replacements have in common is the lack of growth, repair, and remodeling capabilities. To overcome these limitations, the emerging field of tissue engineering is focusing on the in vitro generation of functional, living heart valve replacements. The basic approach uses starter matrices of either decellularized xenogeneic or biopolymeric materials configured in the shape of the heart valve and subsequent cell seeding. Moreover, in vitro strategies using mechanical loading in bioreactor systems have been developed to improve tissue maturation. This chapter gives a short overview of the current concepts and provides detailed methods for in vitro heart valve tissue engineering

    Engineered Tissue-Stent Biocomposites as Tracheal Replacements

    No full text
    Here we report the creation of a novel tracheal construct in the form of an engineered, acellular tissue-stent biocomposite trachea (TSBT). Allogeneic or xenogeneic smooth muscle cells are cultured on polyglycolic acid polymer-metal stent scaffold leading to the formation of a tissue comprising cells, their deposited collagenous matrix, and the stent material. Thorough decellularization then produces a final acellular tubular construct. Engineered TSBTs were tested as end-to-end tracheal replacements in 11 rats and 3 nonhuman primates. Over a period of 8 weeks, no instances of airway perforation, infection, stent migration, or erosion were observed. Histological analyses reveal that the patent implants remodel adaptively with native host cells, including formation of connective tissue in the tracheal wall and formation of a confluent, columnar epithelium in the graft lumen, although some instances of airway stenosis were observed. Overall, TSBTs resisted collapse and compression that often limit the function of other decellularized tracheal replacements, and additionally do not require any cells from the intended recipient. Such engineered TSBTs represent a model for future efforts in tracheal regeneration

    Engineered Vascular Tissue Fabricated from Aggregated Smooth Muscle Cells

    No full text
    The goal of this study was to develop a system to rapidly generate engineered tissue constructs from aggregated cells and cell-derived extracellular matrix (ECM) to enable evaluation of cell-derived tissue structure and function. Rat aortic smooth muscle cells seeded into annular agarose wells (2, 4 or 6 mm inside diameter) aggregated and formed thick tissue rings within 2 weeks of static culture (0.76 mm at 8 days; 0.94 mm at 14 days). Overall, cells appeared healthy and surrounded by ECM comprised of glycosoaminoglycans and collagen, although signs of necrosis were observed near the centers of the thickest rings. Tissue ring strength and stiffness values were superior to those reported for engineered tissue constructs cultured for comparable times. The strength (100–500 kPa) and modulus (0.5–2 MPa) of tissue rings increased with ring size and decreased with culture duration. Finally, tissue rings cultured for 7 days on silicone mandrels fused to form tubular constructs. Ring margins were visible after 7 days, but tubes were cohesive and mechanically stable, and histological examination confirmed fusion between ring subunits. This unique system provides a versatile new tool for optimization and functional assessment of cell-derived tissue, and a new approach to creating tissue-engineered vascular grafts
    corecore