47 research outputs found

    High power ultra-short pulse Quantum-dot lasers

    Get PDF
    In this thesis, novel multi-section laser diodes based on quantum-dot material are designed and investigated which exhibit a number of advantages such as low threshold current density; temperature-insensitivity and suppress carrier diffusion due to discrete nature of density of state of quantum-dots. The spectral versatility in the range of 1.1 µm – 1.3 µm wavelengths is demonstrated through novel mode-locking regimes such as dual-wavelength mode-locking, wavelength bistability and broad tunability. Moreover, broad pulse repetition rate tuning using an external cavity configuration is presented. A high peak power of 17.7 W was generated from the quantum-dot laser as a result of the tapered geometry of the gain section of the laser has led to successful application of such device for two-photon imaging. Dual-wavelength mode-locking is demonstrated via ground (?=1180 nm) and excited (?=1263 nm) spectral bands with optical pulses from both states simultaneously in the 5-layer quantum-dot two-section diode laser. The widest spectral separation of 83 nm between the modes was achieved in a dual-wavelength mode-locked non-vibronic laser. Power and wavelength bistability are achieved in a mode-locked multi-section laser which active region incorporates non-identical QD layers grown by molecular beam epitaxy. As a result the wavelength can be electronically controlled between 1245 nm and 1290 nm by applying different voltages to the saturable absorber. Mode-locked or continuous-wave regimes are observed for both wavelengths over a 260 mA – 330 mA current ranges with average power up to 28 mW and 31 mW, respectively. In mode-locked regime, a repetition rate of 10 GHz of optical pulses as short as 4 ps is observed. Noticeable hysteresis of average power for different bias conditions is also demonstrated. The wavelength and power bistability in QD lasers are potentially suitable for flip-flop memory application. In addition, a unique mode-locked regime at expense of the reverse bias with 50 nm wavelength tuning range from 1245 nm to 1290 nm is also presented. Broad repetition rate tunability is shown from quantum-dot external cavity mode-locked 1.27 µm laser. The repetition rate from record low of 191 MHz to 1 GHz from fundamental mode-locking was achieved. Harmonic mode-locking allows further to increase tuning up to 6.8 GHz (34th-order harmonic) from 200 MHz fundamental mode-locking. High peak power of 1.5 W can be generated directly from two-section 4 mm long laser with bent waveguide at angle of 7° at 1.14 GHz repetition rate without the use of any pulse compression and optical amplifier. Stable mode-locking with an average power up to 60 mW, corresponding to 25 pJ pulse energy is also obtained at a repetition frequency of 2.4 GHz. The minimum time-bandwidth product of 1.01 is obtained with the pulse duration of 8.4 ps. Novel tapered quantum-dot lasers with a gain-guided geometry operating in a passively mode-locked regime have been investigated, using structures that incorporated either 5 or 10 quantum dot layers. The peak power of 3.6 W is achieved with pulse duration of 3.2 ps. Furthermore, the record peak power of 17.7 W and transform limited pulses of 672 fs were achieved with optimized structure. The generation of picosecond pulses with high average power of up to 209 mW was demonstrated, corresponding to 14.2 pJ pulse energy. The improved optical parameters of the tapered laser enable to achieve nonlinear images of fluorescent beads. Thus it is for the first time that QD based compact monolithic device enables to image biological samples using two-photon microscopy imaging technique.EThOS - Electronic Theses Online ServiceEU FP7 “FAST-DOT” project (Grant No. 224338)GBUnited Kingdo

    Generation of tunable visible picosecond pulses by frequency-doubling of a quantum-dot laser in a PPKTP waveguide

    Get PDF
    We demonstrate a compact all-room-temperature picosecond laser source broadly tunable in the visible spectral region between 600 nm and 627 nm. The tunable radiation is obtained by frequency-doubling of a tunable quantum-dot external-cavity mode-locked laser in a periodically-poled KTP multimode waveguide. In this case, utilization of a significant difference in the effective refractive indices of the high- and low-order modes enables to match the period of poling in a very broad wavelength range. The maximum achieved second harmonic output peak power is 3.25 mW at 613 nm for 71.43 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%

    Patient-Specific 3D Printed Models for Education, Research and Surgical Simulation

    Get PDF
    3D printing techniques are increasingly used in engineering science, allowing the use of computer aided design (CAD) to rapidly and inexpensively create prototypes and components. There is also growing interest in the application of these techniques in a clinical context for the creation of anatomically accurate 3D printed models from medical images for therapy planning, research, training and teaching applications. However, the techniques and tools available to create 3D models of anatomical structures typically require specialist knowledge in image processing and mesh manipulation to achieve. In this book chapter we describe the advantages of 3D printing for patient education, healthcare professional education, interventional planning and implant development. We also describe how to use medical image data to segment volumes of interest, refine and prepare for 3D printing. We will use a lung as an example. The information in this section will allow anyone to create own 3D printed models from medical image data. This knowledge will be of use to anyone with little or no previous experience in medical image processing who have identified a potential application for 3D printing in a medical context, or those with a more general interest in the techniques

    A patient-specific multi-modality abdominal aortic aneurysm imaging phantom

    Get PDF
    PURPOSE: Multimodality imaging of the vascular system is a rapidly growing area of innovation and research, which is increasing with awareness of the dangers of ionizing radiation. Phantom models that are applicable across multiple imaging modalities facilitate testing and comparisons in pre-clinical studies of new devices. Additionally, phantom models are of benefit to surgical trainees for gaining experience with new techniques. We propose a temperature-stable, high-fidelity method for creating complex abdominal aortic aneurysm phantoms that are compatible with both radiation-based, and ultrasound-based imaging modalities, using low cost materials. METHODS: Volumetric CT data of an abdominal aortic aneurysm were acquired. Regions of interest were segmented to form a model compatible with 3D printing. The novel phantom fabrication method comprised a hybrid approach of using 3D printing of water-soluble materials to create wall-less, patient-derived vascular structures embedded within tailored tissue-mimicking materials to create realistic surrounding tissues. A non-soluble 3-D printed spine was included to provide a radiological landmark. RESULTS: The phantom was found to provide realistic appearances with intravascular ultrasound, computed tomography and transcutaneous ultrasound. Furthermore, the utility of this phantom as a training model was demonstrated during a simulated endovascular aneurysm repair procedure with image fusion. CONCLUSION: With the hybrid fabrication method demonstrated here, complex multimodality imaging patient-derived vascular phantoms can be successfully fabricated. These have potential roles in the benchtop development of emerging imaging technologies, refinement of novel minimally invasive surgical techniques and as clinical training tools

    Evaluation of a calibration rig for stereo laparoscopes

    Get PDF
    BACKGROUND: Accurate camera and hand-eye calibration are essential to ensure high quality results in image guided surgery applications. The process must also be able to be undertaken by a non-expert user in a surgical setting. PURPOSE: This work seeks to identify a suitable method for tracked stereo laparoscope calibration within theatre. METHODS: A custom calibration rig, to enable rapid calibration in a surgical setting, was designed. The rig was compared against freehand calibration. Stereo reprojection, stereo reconstruction, tracked stereo reprojection and tracked stereo reconstruction error metrics were used to evaluate calibration quality. RESULTS: Use of the calibration rig reduced mean errors: reprojection (1.47mm [SD 0.13] vs 3.14mm [SD 2.11], p-value 1e-8), reconstruction (1.37px [SD 0.10] vs 10.10px [SD 4.54], p-value 6e-7) and tracked reconstruction (1.38mm [SD 0.10] vs 12.64mm [SD 4.34], p-value 1e-6) compared with freehand calibration. The use of a ChArUco pattern yielded slightly lower reprojection errors, while a dot grid produced lower reconstruction errors and was more robust under strong global illumination. CONCLUSION: The use of the calibration rig results in a statistically significant decrease in calibration error metrics, versus freehand calibration, and represents the preferred approach for use in the operating theatre. This article is protected by copyright. All rights reserved

    Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Get PDF
    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3 to 10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB/cm at 3 MHz and from 6.84 to 26.63 dB/cm at 10 MHz. With solid glass sphere concentrations in the range of 0.025 to 0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4 ± 1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines

    Broad Repetition-Rate Tunable Quantum-Dot External-Cavity Passively Mode-Locked Laser with Extremely Narrow Radio Frequency Linewidth

    Get PDF
    We report on a systematic investigation of a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser with a quasi-continuous frequency tuning range from 1 GHz to a record-low value of 191 MHz. A nearly constant pulse peak power at the different pulse repetition rates is revealed in the continuous frequency tuning range. The trend and optimization of the stable fundamental mode-locking are presented and interpreted. An RF linewidth of a record value of ~30 Hz is demonstrated, which indicates the low noise operation and high stability of the quantum-dot external-cavity passively mode-locked laser

    Quantification of light attenuation in optically cleared mouse brains Quantification of light attenuation in optically cleared mouse brains

    No full text
    Abstract. Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high-resolution, three-dimensional images of biological structures deep within the tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue and applied it to the mouse brain. Three clearing techniques were compared: BABB (1:2 mixture of benzyl alcohol and benzyl benzoate, also known as Murray's clear), pBABB (peroxide BABB, a modification of BABB which includes the use of hydrogen peroxide), and passive CLARITY. We found that BABB and pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and our results show that light is most attenuated in regions with high lipid content. We provide a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues
    corecore