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Abstract. 

In this thesis, novel multi-section laser diodes based on quantum-dot material are 

designed and investigated which exhibit a number of advantages such as low threshold 

current density; temperature-insensitivity and suppress carrier diffusion due to 

discrete nature of density of state of quantum-dots. The spectral versatility in the 

range of 1.1 µm – 1.3 µm wavelengths is demonstrated through novel mode-locking 

regimes such as dual-wavelength mode-locking, wavelength bistability and broad 

tunability. Moreover, broad pulse repetition rate tuning using an external cavity 

configuration is presented. A high peak power of 17.7 W was generated from the 

quantum-dot laser as a result of the tapered geometry of the gain section of the laser 

has led to successful application of such device for two-photon imaging. 

Dual-wavelength mode-locking is demonstrated via ground (λ=1180 nm) and 

excited (λ=1263 nm) spectral bands with optical pulses from both states 

simultaneously in the 5-layer quantum-dot two-section diode laser. The widest 

spectral separation of 83 nm between the modes was achieved in a dual-wavelength 

mode-locked  non-vibronic laser.  

Power and wavelength bistability are achieved in a mode-locked multi-section laser 

which active region incorporates non-identical QD layers grown by molecular beam 

epitaxy. As a result the wavelength can be electronically controlled between 1245 nm 

and 1290 nm by applying different voltages to the saturable absorber. Mode-locked or 

continuous-wave regimes are observed for both wavelengths over a 260 mA – 330 mA 

current ranges with average power up to 28 mW and 31 mW, respectively. In mode-

locked regime, a repetition rate of 10 GHz of optical pulses as short as 4 ps is observed. 

Noticeable hysteresis of average power for different bias conditions is also 



ix 
 

demonstrated. The wavelength and power bistability in QD lasers are potentially 

suitable for flip-flop memory application. In addition, a unique mode-locked regime at 

expense of the reverse bias with 50 nm wavelength tuning range from 1245 nm to 

1290 nm is also presented. 

Broad repetition rate tunability is shown from quantum-dot external cavity mode-

locked 1.27 µm laser. The repetition rate from record low of 191 MHz to 1 GHz from 

fundamental mode-locking was achieved. Harmonic mode-locking allows further to 

increase tuning up to 6.8 GHz (34th-order harmonic) from 200 MHz fundamental 

mode-locking. High peak power of 1.5 W can be generated directly from two-section   

4 mm long laser with bent waveguide at angle of 7⁰ at 1.14 GHz repetition rate without 

the use of any pulse compression and optical amplifier. Stable mode-locking with an 

average power up to 60 mW, corresponding to 25 pJ pulse energy is also obtained at a 

repetition frequency of 2.4 GHz. The minimum time-bandwidth product of 1.01 is 

obtained with the pulse duration of 8.4 ps.  

Novel tapered quantum-dot lasers with a gain-guided geometry operating in a 

passively mode-locked regime have been investigated, using structures that 

incorporated either 5 or 10 quantum dot layers. The peak power of 3.6 W is achieved 

with pulse duration of 3.2 ps. Furthermore, the record peak power of 17.7 W and 

transform limited pulses of 672 fs were achieved with optimized structure. The 

generation of picosecond pulses with high average power of up to 209 mW was 

demonstrated, corresponding to 14.2 pJ pulse energy.  

The improved optical parameters of the tapered laser enable to achieve nonlinear 

images of fluorescent beads. Thus it is for the first time that QD based compact 

monolithic device enables to image biological samples using two-photon microscopy 

imaging technique.  
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locked laser. (b) Mapping of the dual-wavelength mode-locking regime here described 

(GSML+ESML). Legend: GSML – ground-state mode-locking; ESML – excited-state 

mode-locking; GSCW - ground-state continuous wave operation. 

Fig. 5.5 (a) Optical spectrum and (b) RF spectrum characteristics of the dual-

wavelength mode-locked regime, for an injection current of 425 mA and reverse bias 

of 6 V. 

Fig. 5.6 Autocorrelation traces for (a) GS mode-locking and (b) ES mode-locking at 6 V 

reverse bias and 425 mA gain current. 

Fig. 5.7 Pulse width dynamics with bias conditions for 2 mm laser with (a) 5, (b) 10 and 

(c) 15 QD layers. Number of measured points is ~ 1600. 

Fig. 5.8 Peak Power dynamics with bias conditions for a 2 mm laser with (a) 5, (b) 10 

and (c) 15 QD layers. Number of measured points is ~ 1600. 

Fig. 5.9 Mapping of mode-locking regimes observed for a 1.3 mm long 5 QD layers 

device, under an operating temperature of (a) 20⁰C and (b) 14⁰C.  GS/ES: ground-

state/excited state. CW/ML: continuous-wave/mode-locked operation. 

Fig. 5.10 The average power dynamics for a 1.3 mm long device having 5 QD layers 

with (a) 0 V, (b) 2 V and (c) 3.5 V reverse bias. GS/ES: ground-state/excited state. 

CW/ML: continuous-wave/mode-locked operation. 
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Fig. 5.11 (a) Pulse width and (b) Peak power evolution with bias conditions for a        

1.3 mm long device having 5 QD layers. Number of measured points is ~ 400. 

Fig. 6.1 Schematic of a multi-section quantum dot laser. 

Fig. 6.2 (a) Dynamics for a fixed gain current of 260 mA with various values of 

ascending and descending reverse bias of the emission wavelength ; (b) pulse duration 

and (c) output power.  

Fig. 6.3 Dynamics of the emission wavelength with various values of ascending (black 

line) and descending (red line) reverse bias for a fixed gain current of a) 300 mA and    

b) 330 mA in continuous wave (CW) and mode-locking (ML) regimes of operation. 

Fig. 6.4 Dynamics of the pulse duration with ascending (black line) and descending (red 

line) direction of applied reverse bias for a fixed gain current of (a) 300 mA and          

(b) 330 mA.      

Fig. 6.5 Dynamics of the average power with descending (black line) and descending 

(red line) direction of applied reverse bias for a fixed gain current of (a) 300 mA and  

(b) 330 mA. 

Fig. 6.6 (a) Spectral tunability, (b) corresponding autoccorelations and (c) RF spectra in 

the ascending direction for a fixed gain current of 300 mA with applied reverse bias. 

Fig. 6.7 Spectral tunability with high suppression ratio of more than 40 dB in 

descending direction for a fixed gain current of 330 mA with applied reverse bias. 

Fig. 6.8 Dual-mode generation with 40 dB suppression ratio in both mode with similar 

power of 15 mW in descending direction at 0 V reverse bias  for a fixed gain current of 

a) 300 mA and b) 330 mA. 

Fig. 7.1 The experimental setup for an external cavity laser system (QD curve TS: 

quantum dot curved two-section diode; A- Absorber section, G- Gain section, L: lens, 
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OC: output coupler (T=53 % or 96 %), TS: motorized translation stage, OI: optical 

isolator, HWP: haft wave plate, F: fibre, FS: single mode fibre splitter, PD: photo diode, 

RFSA: RF spectrum analyzer, AUT: autocorrelator, OSC: oscilloscope, OSA/SA: Optical 

spectrum analyzer/ Spectrum analyzer, PC-personal computer). 

Fig. 7.2 Light-current characteristics of the QD laser (a) without external feedback; and 

(b) the external-cavity laser for 0 V and 7.2 V of reverse-bias. 

Fig. 7.3 (a) Autocorrelation trace, (b) optical spectrum, (c) RF spectrum with 500 MHz 

span and (d) 10-GHz span at a reverse bias of 7.2 V and forward current of 457 mA. 

Fig. 7.4 (a) Peak power, average power and (b) pulse duration versus forward current 

with 7.2 V reverse bias. 

Fig. 7.5 Representative RF spectra with 10 GHz span at a reverse bias of 8 V and 

forward current of 300 mA recorded for the variable repetition rate from 1 GHz to   

191 MHz.  

Fig. 7.6 A stable fundamental mode-locking regime with a repetition rate of 750 MHz. 

Fig. 7.7 Dynamics of a peak power and average power at 8 V reverse bias for (a) 

different pulse repetition rate for a fixed forward current of 300 mA, inset: 

autocorrelation trace for 191 MHz corresponding to 10.2 ps pulse duration and (b) 

different driving forward current for a fixed repetition rate of 375 MHz. 

Fig. 7.8 (a) RF spectrum with 10 GHz span corresponding to a fundamental pulse 

repetition rate 200 MHz measured under a reverse bias of 8 V and forward current of 

300 mA. The resolution and video bandwidth for this acquisition were 30 Hz and 3 Hz, 

respectively. (b) A broad tunable harmonics repetition rate region up to 6.8 GHz – 34th 

order harmonic of a 200 MHz fundamental frequency. 

Fig. 7.9 (a) RF spectrum measured at a reverse bias of 8 V and forward current of     

300 mA, at a 281 MHz pulse repetition rate. (b) RF spectrum with a 10 KHz span, with a 
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-3dB linewidth of ~30 Hz (obtained after Lorentzian fit). The resolution and video 

bandwidth for this acquisition were 30 Hz and 3 Hz, respectively. 

Fig. 7.10 Dynamic of -3 dB RF linewidth with frequency from the QD-Based external 

cavity mode-locked laser at a reverse bias of 8 V and forward current of 300 mA. 

Fig. 8.1 A schematic of the tapered (a) fully-index and (b) index- gain-guided lasers 

Fig. 8.2 A schematic of the tapered fully gain guided laser. 

Fig. 8.3 Light-current (L-I) characteristics for fully connected 5-layer and 10-layer 

quantum dot devices. Upper left inset: L-I characteristics obtained for an applied 

absorber bias of -4 V.  Lower right inset: dependence between the threshold current 

and the absorber bias. 

Fig. 8.4 Mapping of mode-locking regimes observed for (a) the 5-layer quantum dot 

laser, (b) the 10 layer quantum dot laser. 

Fig. 8.5 (a) Pulse duration and (b) average power dynamics at a reverse bias -4 V for 

the 5-layer quantum dot laser. 

Fig. 8.6 Far-fields (a) under uniform injection and (b) under -4 V reverse bias on the 

absorber section for the 5-layer quantum dot laser (characterized by III-V Lab, France). 

Fig. 8.7 (a) Autocorrelation, (b) RF spectrum and (c) optical spectrum for an injection 

current of 950 mA and reverse bias of 5.1 V at a high peak power regime in the 5-layer 

quantum dot laser. 

Fig. 8.8 (a) Autocorrelation, (b) RF spectrum and (c) optical spectrum for an injection 

current of 1044 mA and reverse bias of 4.9 V at high peak power regime in the 10-layer 

quantum dot laser. 

Fig. 8.9 Simulated pulse width (a), average power (b) and peak power (c) as a function 

of the SA voltage and current above threshold I-Ith, for a 4 mm device with a 2° full 
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angle tapered gain section and 17% SA section to gain section length ratio. Shaded 

region highlights unstable ML due to large leading edge (LE) instability (performed by 

the Politecnico di Torino, Italy). 

Fig. 8.10 Pulse width (a), average power (b) and peak power (c) as a function of the SA 

voltage and current above threshold I-Ith, for a 4 mm device with 2° full angle tapered 

gain section and 25% SA section to gain section length ratio. No leading edge instability 

to spontaneous emission noise perturbations has been observed in the investigated 

range of bias parameters (performed by the Politecnico di Torino, Italy). 

Fig. 8.11 Dynamic characterization experimental setup: QD -TSD: quantum dot - two 

section diode, A- absorber section, G: gain section, TC: temperature controller, L: lens, 

OI: optical isolator, HWP: half wave plate, SMF: single-mode fiber, FS: fiber splitter, 

OSA: optical spectrum analyzer; PC: personal computer; Autoco: autocorrelator; Osc: 

oscilloscope; PD: photo detector; RFSA: RF spectrum analyzer. 

Fig. 8.12 Light current characteristic for device A at a reverse bias of -6.0V. The 

shortest pulses are obtained at 570 mA and the highest peak power at 695 mA 

(Characterized at Technical University of Darmstadt, Germany). 

Fig. 8.13 Autocorrelation signal of the shortest pulse width of laser A; inset left: an 

optical spectrum; inset right: RF spectrum at a gain current of 570 mA and reverse bias 

of -6.0 V. Sech2 fit (Characterized at Technical University of Darmstadt, Germany). 

Fig. 8.14 Pulse width in dependence of a gain current of laser A at a reverse bias 

of -6.0 V (Characterized at Technical University of Darmstadt, Germany). 

Fig. 8.15 Dependence of peak power as a function of a gain current of laser A at a 

reverse bias of -6.0 V (Characterized at Technical University of Darmstadt, Germany). 
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Fig. 8.16 Far field slow-axis pattern measured on device A at 575 mA and 675 mA with 

a very low full width of 2.4° and 3.1° at 1/e² of maximum, respectively (characterized 

by III-V Lab, France). 

Fig. 8.17 a, b Light-current curves for a laser B at 20⁰ C (a) under uniform injection (red 

line) with a threshold current of 341 mA and (b) under an applied voltage of -4 V on 

the absorber section (black line) with a 720 mA threshold current. 

Fig. 8.18 (a) Pulse duration and (b) peak power dynamics at a -4 V reverse bias for 

quantum-dot tapered laser B. 

Fig. 8.19 (a) Autocorrelation (Inset:  RF spectrum); (b) optical spectrum for an injection 

current of 1 A and reverse bias of -4 V for a short pulse regime for quantum-dot 

tapered laser B. 

Fig. 8.20 (a) Autocorrelation (Inset: RF spectrum); (b) optical spectrum for an injection 

current of 1.5 A and reverse bias of -4 V for a record-high peak power regime for 

quantum-dot tapered laser B. 

Fig. 8.21 Shows far field slow-axis pattern measured on device B at 1 A (shortest pulse 

width) and 1.5 A (highest peak power) with a very low full width of 3.3°and 2.2° at 1/e² 

of maximum, respectively (characterized by III-V Lab, France). 

Fig. 8.22 A phase noise and integrated timing jitter for an injection current of 955 mA 

and reverse bias of -4.17 V at 14˚C for laser B. 

Fig. 8.23 Experimental setup for two-photon imaging with a tapered laser and 

nonlinear microscope. 

Fig. 8.24 A two-photon image of fluorescent beads using QD tapered laser B. 

Fig. 9.1 A map for a progress of QD based lasers: MML Laser- monolithic mode-locked 

laser, ECML- external cavity mode-locked laser, Tapered mode-locked (ML) laser 

toward biophotonics. 
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Tables. 

Table 3.1 A performance summary of the main types of short pulse generation 

techniques for electrically pumped semiconductor lasers. 

Table 3.2 Overview of mode-locked InGaAs quantum well lasers with the following  

characteristics: τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, 

frep- pulse repetition rate, Ppeak–peak power, TBWP- Time bandwidth product, NL-

number of layers,  n/a- not applicable. The best performances are in bold. 

Table 3.3 Overview of mode-locked InGaAsP quantum well lasers with the following 

characteristics: τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, 

frep- pulse repetition rate, Ppeak–peak power, TBWP- Time bandwidth product, NL-

number of layers, n/a- not applicable. The best performances are in bold. 

Table 3.4 Overview of mode-locked InAs/GaAs Quantum Dot lasers with the following 

characteristics: τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, 

frep- pulse repetition rate, Ppeak–peak power, TBWP- Time bandwidth product, NL-

number of layers, n/a- not applicable. The results highlighted in green are shown in 

more detail in the thesis. In blue are the results which were achieved by our group in 

the past. The best performances are in bold. 

Table 4.1 Second-order autocorrelation functions and bandwidth products for 

Gaussian, Hyperbolic Secant squared and Lorentzian pulse shapes. TBWP- Time-

bandwidth product. 

Table 5.1 Bias conditions: reverse voltage to the absorber (V) and forward current to 

the gain section (I); pulse duration (τ), Average power (Pav), Peak Power (Ppeak), Time 

bandwidth product (TBWP), full width half maximum of optical spectra (Δλ ), central 
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wavelength (λ), GS –ground state (black) or ES-excited state (red) of dual-mode regime 

in QD-based mode-locked laser.  

Table 9.1 Performance of QD-based devices presented in the thesis. 
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Chapter 1. Introduction. 

1.1 Ultrashort-pulse lasers.  

Recent development and progress of the ultrafast optical sources enable them to be 

used for a variety of applications from medical treatment (dentistry, eye surgery, 

dermatology, tattoo removal, hair removal, photodynamic therapy) [1], displays [2], 

spectroscopy, Light Detection and Ranging (LIDAR)and photochemistry (cancer 

detection and treatment) [3-4], optical metrology (precise measurement, navigation, 

scanners, optical sampling, all-optical clock, fibre-optic sensors) [5] to material 

processing [6] and laser cooling [7].  

New doors were opened with the generation of femtosecond optical pulses for 

areas such as material processing, biophotonics, and telecommunication.  Due to the 

ultra short pulse the peak power can be very high despite low average power. It is very 

important for a variety of applications as the thermal stress is reduced, for example, 

micro-machining and photo-ablation of biological tissues. Nano surgery in a living cell is 

now possible without surface damage to the membrane. The high peak power of 

femtosecond laser is very useful for generating nonlinear optical response in biological 

samples. Several innovative nonlinear optical microscopy techniques involving multi-

photon fluorescence and second harmonic generation have become widely used for 

biological and biomedical research providing 3D imaging of fine structures, even at a 

cellular level [8]. Femtosecond laser tweezers can now be used in near-field optics as 

well as for studying fundamental cell biology and cell mechanics [9-10]. In 

telecommunication, ultrafast optical technology is facing the challenge of increasing 

networks capacity. Ultra high speed data streams can be created by femtosecond 

pulses [11]. Code-division multiple accesses (CDMA) are possible due to broad-band 
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coherence of ultrashort optical pulses.  As a result of the high peak power such lasers 

can be used for nonlinear processes such as frequency conversion, optical time-domain 

multiplexing (OTDM)/demultiplexing, wavelength-division multiplexing (WDM), and 

further spectral broadening [12].  Precise timing of the short pulses is used for all-

optical clock recovery [13].  

Crystal-based solid state lasers have shown great potential for a variety of 

applications due to the possibility of generating femtosecond pulses with high peak 

power [14-15].  Thin-disk Yb: YAG lasers can produce up to 60 W average power [16] 

and Kerr-lens-mode-locked Ti: Sapphire lasers allow directly generating the pulses as 

short as 5 fs [17]. Notwithstanding of all the advantages solid state lasers are very 

expensive, complex, and bulky as well as the overall wall plug efficiency is far from ideal 

[18]. They are not electrically pumped and thus a separate pump laser is often required 

with a cooling system. Also there is no direct control over the laser gain medium.  The 

low gain of the crystals defines the required minimum crystal length which in turn 

limits the pulse repetition rate. Scientists are looking for alternative laser systems 

which will remove the above limitations. One of the ways is to use fibre laser systems. 

It was shown that short pulses 3.5 ps can be generated at 1075 nm wavelength with a 

repetition rate of 22 MHz [19]. High output power Yb doped fibre laser is now 

developed with output more than 100 W operating at 1080 nm as well [20]. Another 

way to do this is to use electrically pumped semiconductor femtosecond diode lasers 

that are very cheap, compact, integrated devices with high wall plug efficiency.  
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1.2 The development of semiconductor lasers. 

1.2.1 p-n Junction. 

 Laser diodes are formed by doping a thin layer of the semiconductor crystal 

inhomogeneously.  In the crystal p-doped (with an excess of holes) and n-doped (i.e., 

with an excess of electrons) regions are produced one above the other resulting in a 

heterojunction (p-n junction). In this area the diffusion process takes place ideally until 

the carrier concentrations become equal on both sides of the junction. The holes 

diffuse from the p-side leaving behind the ionized acceptor atoms while the electrons 

move from n-side and leave the ionized donor atoms. As the result the electric field 

appears in the direction of the n-side to p-side thus opposing diffusion of holes from 

the p-side and electrons from the n-side. Electrons’ movement from n-side to p-side is 

corresponding to the diffusion current. The flow of the carriers in the opposite 

direction constitutes the drift current. As forward bias is applied to the junction (where 

p-side is connected to the positive end and n-side to the negative end of the voltage 

source) the electrons move more freely into the p-type region and the diffusion 

current exceeds the drift current (Fig. 1.1 (a)). Thus the direction of the net current is 

from p-side to n-side. If reverse bias is applied to the p-n junction then the energy step 

at this junction is increased as shown in Fig. 1.1 (b) and it becomes more difficult for 

electrons move from n-side to p-side. In such a scenario the drift current exceeds the 

diffusion current and the net current is directed from the n-side to the p-side [21]. In a 

two-section laser, the gain section is forward biased while the absorber section is 

reversed bias. 
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Fig. 1.1 (a) Decreasing of the energy step under forward bias, allowing electrons and holes 

to cross the junction, (b) Increasing of the energy step with reverse bias, and very few carriers 

cross the junction [21]. 
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1.2.2 Double heterostructure.  

Semiconductor lasers based on p-n junction were not very efficient until after the 

development of double heterostructure. B. I. Davydov’s diffusion theory of p-n 

heterojunction rectification and W. Shockley’s junction theory laid the foundations of 

semiconductor laser diodes [22-23]. Basov et.al [24-25] proposed semiconductors 

lasers and Nasledov [26] showed first indication of stimulated emission. Hall et.al. 

invented the first semiconductor injected laser converting electrical energy to coherent 

infrared radiation [27]. Shortly after, three other groups iterated the same discovery 

[28-30]. They observed sharp beam radiation patterns, abrupt increases of the light 

intensity above threshold, and narrowing of the spectral distribution of the emission 

beyond threshold current [28-30]. Semiconductor lasers exhibited very high optical and 

electrical losses as bulk material was used until after the revolutionary idea of using 

double heterostructure (DH) as active region of the lasers was proposed [31-32]. In 

2000 Zhores I. Alferov and Herbert Kroemer were awarded the Nobel Prize in Physics 

for developing semiconductor heterostructures used in high-speed and opto-

electronics [33]. Heterostructures are formed from multiple heterojunctions. In 

classical heterostructures several fundamental physical phenomena take place: 

superinjection of carriers, optical confinement as well as electron confinement, wide-

gap window effect, and diffusion and tunnelling, as shown in Fig. 1.2 [31].  
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Fig.1.2 Main physical phenomena in classical heterostructures: (a) One-side injection and 

superinjection; (b) diffusion in built-in quasi-electric field; (c) electron and optical confinement; 

(d) wide-gap window effect; (e) diagonal tunnelling through a heterostructure interface [31]. 

 

DH is a sandwich of lattice-matched material (for example GaAs and AlGaAs) where 

the centre of the sandwich has a lower energy gap than the sides Eg2 < Eg1, as shown in 

Fig. 1.3. Thus a fundamental advantage of DH is the effective confinement of both 

electrons and holes in the narrow gap region (ΔEc and ΔEv) enhancing the efficiency of 

the laser. In addition, the centre region, Eg2, with lower energy bandgap typically has a 

higher refractive index than the outer layers forming a slab waveguide and guiding the 

emitted light.  Such advantages of DH have led to a decrease of the threshold current 

density (Jth) of the laser. If a centre region is sufficiently thin then quantum properties 

play an important role in the layer. 
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Fig. 1.3 Simplified energy band diagram for double heterostructure (DH). 
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1.2.3 Dimensionality of the semiconductor structures. 

The dimensionality of a semiconductor structure has a strong influence on its 

optoelectronics properties. Quantum size effect takes place when the thickness of an 

active semiconductor region is reduced to a carrier de Broglie wavelength, as shown in 

Eq. 1: 

�B = �
� = �

√��∗!    (1.1), 

where λB-wavelength, h-Planck’s constant, p-momentum of a particle, m*-the electron 

effective mass, and E-the energy [34].  

Typical λB for AlGaAs is in order of 10-20 nanometres.  Therefore, when the centre 

layer thickness is below 10-20 nm, the charge carriers are effectively confined in one 

dimension.  Allowed electron/hole energies are no longer a continuum, as in bulk 

materials, but discrete as defined by solving the quantum mechanical problem of a 

particle in a potential well. Such thin DH, so-called “quantum-wells”, exhibited better 

performance in term of recombination in a narrow linewidth or fixed wavelength as 

well as in terms of more efficient carrier thermalization due to the change of the 

density of state (DOS) of the carriers [35]. The DOS gives a measure of the maximum 

number of carriers that can occupy an energy range.  The wavelength of the light 

emitted by a quantum well laser is determined by the width of the active region rather 

than just the bandgap of the material from which it is constructed. Much shorter 

wavelengths than a conventional laser diode can be achieved by this configuration. The 

confinement of electrons/holes in two dimensions and free movement in the third, has 

leads  to a further change of the energy-momentum relationship and formation of 

quantum wire (QWR). For QWR, the DOS for certain energies becomes higher than the 
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DOS for QW or bulk semiconductors. Lastly, a zero-dimensional (meaning in all three 

dimensions confined) structure is called quantum dot (QD). QDs are clusters of 

semiconductor material, just a few nanometres size in all three dimensions. The DOS is 

changed as well and presents itself like a delta peak function, so the charge carriers 

take up only a specific set of energy levels like electrons in an atom. That is why QDs 

are often called “artificial atoms”. The schematic morphology of different 

dimensionality semiconductor structures, with corresponding density of states of 

charge carriers, is shown in Fig. 1.4. 

 

Fig. 1.4 (up) Schematic morphology and (down) the density of states of charge carriers for 

(a) bulk, (b) quantum well, (c) quantum wire, (d) quantum dot semiconductor structures. 

The electronic characteristics of QDs are closely related to the size and shape of the 

individual crystal.   The smaller the size of the crystal, the higher the band gap between 

the lowest conduction band and the highest valence band becomes, thus increasing 

the energy required to excite the dot. As a consequence more energy is released 

during relaxation. Thus QD based laser exhibits several advantages such as record-low 

threshold current density, suppressed carrier diffusion, resilience to temperature, 

ultra-fast carrier dynamics, and lower absorption saturation fluence. The technological 
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progress of semiconductor lasers have allowed the fabrication of compact, electrically 

pumped, quantum dot based devices, that generate picosecond and femtosecond 

pulses with high repetition rates. These can be used as photo detectors and for data 

transmission systems [36-38]. Consequently, QDs have become a very exciting area of 

scientific research. 
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1.3 Diode lasers toward Biophotonics. 

In recent years, imaging techniques based on nonlinear optical effects have been 

greatly improved by the technological progress of mode-locked femtosecond lasers. 

When biological tissue interacts with an intense ultrashort pulse laser beam, a non-

linear response to the applied field strength is observed, which can be used as the 

imaging contrast. Multi-photon microscopy can not only provide multicolour imaging of 

a surface but also reveal internal organs [39-44].  Compared to single-photon 

fluorescence microscopy, multi-photon fluorescence microscopy has a number of 

advantages (Fig. 1.5). As a result of using a long wavelength for excitation, the 

penetration depth is improved reducing the effect of unwanted Mie and Rayleigh 

scatterings [45]. Although, the axial resolution is greatly improved by use of a confocal 

mask [46]. Two-photon absorption occurs only at the focal plane of the microscope 

objective and fluorescence is confined in the focal volume (Fig. 1.6). Thus three-

dimensional, high resolution, images can be produced without using a confocal pinhole 

mask [47-48]. In addition, some fluorophores are only efficiently excited with two 

photons. 
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Fig. 1.5 Single photon (left) and two-photon (middle) and three photon (right) excitation 

diagrams. 

 

 

Fig. 1.6 One photon excitation (left) and multi-photon excitation (right) at a focal plane of the 

microscope objective. 

 

The idea of two-photon fluorescence scanning microscopy was proposed by 

Sheppard et. al.[49-50] Two-photon fluorescence microscopy was first demonstrated in 

1990 by Denk et. al.[51]. Three-photon fluorescence was also generated when three 

incident photons were absorbed simultaneously in organic solutions, with the radiating 

photon triple the energy of the incident one [52]. Not long after, the first three-photon 

fluorescence microscopic image was recorded using a nonlinear crystal [53]. 
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For successful multiphoton imaging laser should produce enough output power to 

have sufficient high fluorescent intensity (I) that increases with pulse duration (τ), the 

square of the peak power (PPEAK), and with the reciprocal of optical pulse period (T) 

(Eq. 1.2.) [54]: 

                                             I = k �
&P�()*�                     (1.2), 

 

where the factor k depends on the two-photon absorption cross section of the fluorophore 

at the laser wavelength, and on the spatial energy distribution in the focus.  

Knowing duty cycle relationship PAV/PPEAK=τ/T, Eq. 1.2 can be rewritten as Eq.1.3: 

                                           I = kP)+P�()*          (1.3), 

where Pav is the average power. 

 

Given these relationships, how much output power do we need for successful 

multiphoton imaging? The average power should be high enough for excitation of the 

fluorophore, but at the same time it must not to destroy the biological samples. 

Temperature rises due to water absorption and beyond a certain threshold, cells and 

tissues may degrade because of protein denaturation. For imaging through biological 

tissue, a wavelength region between 600 nm and 1300 nm is desirable since this 

corresponds to a transmission window in the absorption profile as shown in Fig. 1.7. At 

wavelengths higher than 1300 nm light absorption by water molecules becomes 

substantial. Several groups have managed to achieve high peak power [55-56]. For 

example, Kim et.al managed to get 1.4 kW peak power at 974 nm from a master 

oscillator system based on eXtreme Chirped Pulse Amplification (X-CPA) involving a 

colliding pulse external cavity mode-locked semiconductor laser, significant pulse 

stretching, multiple amplification stages, and significant compression [55].        



14 
 

Schlauch et.al demonstrated 622 fs pulses with 513 mW output power from an ~830 

nm passive mode-locked tapered laser resulting in a world-record peak power of 2.5 

kW [56]. At the same time, another group has shown the possibility of two-photon 

fluorescence bioimaging of actin filaments in PtK2 cells using a second harmonics 

generation of  1.55 µm gain-switched distributed-feedback-Bragg laser diode 

generating 1 kW of peak power after several amplification stages [54]. 

 

Fig. 1.7 Absorption in tissue is dominated by protein and DNA in the UV, by water in the IR, and 

by haemoglobin and melanin in the visible light [57]. 

 

It was shown that several tens of watts of peak power can be enough for 

multiphoton imaging [58-59]. For example, multiphoton imaging of a cell containing 

Coumarin and mouse kidney was achieved using an external-cavity mode-locked laser 

generating 5 ps pulses with a repetition rate of 500 MHz at 800 nm wavelength with  

20 W and 32 W peak powers, respectively, at the sample plane. The active region of the 

laser consisted of 3 quantum well layers. In order to achieve high peak power, a two-

stage amplifier configuration was also implemented [58].  



15 
 

QD based lasers emitting at 1100 nm to 1300 nm and generating short pulses with 

high output power can be effectively used for multiphoton imaging of biological 

samples due to higher penetration depth. This is one of the goals of this thesis          

(Fig. 1.8). 

 

 

Fig. 1.8 Mapping of the initial state of art at the beginning of this work and goal for the QD 

based mode-locked lasers used in my thesis. 
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1.4 Goals and structure of the thesis. 

The goal of this thesis is to utilize properties of quantum-dot (QD) based 

semiconductor materials and devices for the generation and amplification of ultrashort 

optical pulses using their broad gain/absorption bandwidth. Parallel work will also 

include on progress in the generation and amplification of ultrashort pulses in 1100 nm 

and 1300 nm window and the fabrication of compact, environmentally-stable and 

lower-cost ultrafast lasers and semiconductor optical amplifiers. In addition, electrically 

pumped quantum-dot mode-locked lasers in monolithic and extended cavity 

configurations are investigated as laser sources suitable for a range of biomedical 

applications.  

Chapter 2 of the thesis describes, in detail, the Stranski-Krastanow method of 

quantum dot formation as well as the electronics and morphological properties of QDs, 

leading to an exploration several advantages of QD-based devices that make them 

favourable for ultrafast generation. An overview of the mode-locking techniques and 

state of the art quantum well (QW) and QD GaAs devices are presented in Chapter 3. 

The main equipment and method for characterizing of QD based lasers and devices in 

the experiments are discussed in Chapter 4. The influence of the structural parameters 

of the laser such as cavity length, number of QD layers on ground and/or excited state 

emissions are investigated in Chapter 5. The advanced growing technique makes 

possible tunable and bistable QD lasers. The wavelength and power bistability in QD 

lasers are described in Chapter 6, showing how such devices are suitable for flip-flop 

memory application. QD lasers in an external cavity configuration have exhibited a low 

repetition rate, narrow RF linewidth; fundamental and harmonic mode-locking (see 

Chapter 7). In order to increase output power a tapered geometry gain section of a QD 
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laser was designed, fabricated in III-V Labs in France, characterized at the University of 

Dundee and two-photon imaging tests were performed at the Institute of Photonics 

(ICFO) in Spain. Main results of these tests are shown in Chapter 8. Finally, concluding 

remarks and future work are presented in Chapter 9. 
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Chapter 2. Semiconductor Quantum Dot Devices. 

2.1 Stranski-Krastanow material growth method. 

The first semiconductor lasers were fabricated by the inexpensive and relatively 

simple liquid phase epitaxy method, where the substrate wafer is immersed into a 

container of the molten material that is supposed to be deposited or has a molten 

zone passed over it [1-2]. However, at first such lasers were delivering only a few 

milliwatts of power because of the nonuniform thick-growth wafers that resulted in 

the limitation of the laser’s aperture size to a few micrometers and the thickness of the 

active regions up to 0.5 µm [3-6]. Recently, the Al-free InGaAsP active-region lasers 

have been developed generating the output power up to 20 W in continuous wave    

[7-8]. Alternatively, metal-organic chemical vapour deposition (MOCVD) and molecular 

beam epitaxy (MBE) fabrication methods were developed [9-13]. These fabrication 

methods permitted the control of the crystal deposition in atomic layer accuracy. Thus, 

quantum dot (QD) and quantum well (QW) active layers can be fabricated with 

uniform material deposition. This enables the development of large aperture laser 

structures with improved output power, up to 16W for QD and up to 20 W for QW  

[14-21]. Currently, there are a number of ex situ and in situ methods for the formation 

of zero-dimensional quantum size objects [22-24]. One of the most promising in situ 

methods for the formation of quantum size object during the growth process is called 

the Stranski-Krastanow growth mode. Stranski-Krastanow growth is a particularly 

efficient, defect free, reproducible method of direct semiconductor nanostructure 

synthesis of typically 10 nm in size. The method uses spontaneous islands formation 

during strained-layer heteroepitaxy.  The semiconductor material is grown epitaxially, 

meaning as a single crystal, one on the top of the other (substrate) that has several 
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percent lower lattice constant. The structure is grown layer by layer as shown in Fig. 

2.1. In the beginning atoms form a planar layer called the wetting layer. As the process 

continues the formation of three-dimensional islands, QDs, occurs. Since the QDs 

appear spontaneously during growth, they are said to be self-assembling.  As a result 

Stranski-Krastanow growth opened new doors for the formation of high quality 

extremely small QDs in a maskless and defectless process in one simple deposition 

step. 

 

Fig.2.1 Stranski-Krastanow growth mode of formation three-dimensional (3D) islands. 
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2.2 Self-organized InGaAs quantum dots on a GaAs substrate. 

2.2.1 Shape, size, and distribution of quantum dots. 

The shape of the QD’s are usually pyramidical with a base of 15-20 nm and a height 

in the order of 5 nm [25-27] (Fig. 2.2). The size of the islands can be manipulated 

within a certain range by changing the amount of deposited dot material. In order to 

fabricate an efficient laser, the level of gain and optical confinement should be high 

enough. 

 

Fig.2.2 Schematic of the geometry of InAs/GaAs QD [22]. 

The densities of quantum dots lie in the range of 109 and 1012 cm-2[28]. It means 

one single stack of QDs result in a low gain due to sparse distribution [29]. But there is 

a solution. Instead of using just  one stack of QDs it was proposed growing many layers 

one by one, in order to achieve a desirable optical gain without increasing the internal 

optical loss [30]. For this reason GaAs spacer layers between InAs QD layers can be 

used for eliminating high strain accumulation in each Indium arsenic (InAs) QD layer 

which may lead to strain relaxation with the formation of misfit dislocations and 

degradation in optical properties (Fig.2.3) [31].  
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Fig.2.3 Schematic cross-sectional structure of several layers of quantum dots (QDs)[31]. 
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2.2.2 Lattice mismatch and critical thickness. 

  InAs having a lattice constant of 6.06 Å can be grown on the GaAs substrate with a 

lattice constant of 5.64 Å due to small lattice mismatch which is one of the 

requirements for effective epitaxial growth. Too large a lattice mismatch could 

produce a dislocated epitaxial layer prior to the formation of the coherently strained 

islands [32]. Another requirement for successful QD formation is associated with 

critical layer thickness. Above the certain level of thickness, misfit dislocations appear 

causing a breakdown of coherence between the substrate and epitaxial layer. 

 

Fig. 2.4 The strain distribution in y-z plane in the middle of x axis at T=300 K [31]. 

After the formation of the wetting layer at critical thickness, the atoms of InAs tend 

to bunch up and form clusters or islands.  Such formation is energetically favourable, 

as the increased strain energy can be reduced within the islands as shown in Fig. 2.4 

[25, 31, 33-34]. The strain inside the QD region is compressive shown as the blue 

region. It was shown that the strain distribution depends on the shape of the QD but 

not on its size [25]. Above the wetting layer, the InGaAs layer can be used to cover the 

InAs QD, and the strain in this region is less compressive which works like a buffer 

between the InAs QD and the GaAs substrate. The lattice mismatch is the main 
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parameter defining the misfit dislocation formation between the epitaxial layer and 

the substrate according to the Matthew-Blakeslee (M-B) model [35-38] . 

It was also shown that for weakly strained InGaAs layers (InAs mole fraction ≤0.2) 

result in a lattice mismatch by misfit dislocations, while highly strained InGaAs films 

(InAs mole fraction ≥0.5) grow in a three-dimensional mode prior to the dislocation 

formation [22, 34].  
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2.2.3 Optical emission range.  

Grundmann et al. predicted the increase in the emission wavelength with the 

increase in the island base size [39]. Experimental study of the emission wavelength of 

the InAs/GaAs QDs dependence on a effective thickness of deposited InAs [40]. As 

shown in Fig. 2.5 the photoluminescence (PL) spectra at 77 K of QDs is  shifted to 

longer wavelengths from 800 nm up to 1200 nm as the effective thickness of deposited 

InAs increased [40]. 

 

 

 

 

 

Fig. 2.5 Dependence of photoluminescence spectra at 77 K of GaAs/InAs with effective 

thickness of deposited InAs [40]. 

 

  It can be used for growing a material with a very broad gain bandwidth. This can 

be exploited in a number of ways: developing a superluminescent diode, as well as 

bistable and broadly tunable lasers, as will be shown in chapter 6. 

Moreover, the lasing can occur through either ground state or excited states 

depending on cavity length or bias conditions as will be described in detail in Chapter 

5. Switching between the ground and excited states happens due to gain saturation. 

The maximum optical gain which can be attained is limited by the degeneracy and the 

surface density of QDs. As the gain of ground states is saturated and insufficient for 

lasing at some loss, the excited state emission occurs due to higher degeneracy and 

therefore higher saturated gain. As shown in Fig. 2.6 (a) ground state is mostly 
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populated when the total loss is relatively low (Gth(1)) and as the result the threshold 

carrier concentration is also small (Nth(1)), the Fermi level is also at a low position 

(F(1)). As the loss is increased (Gth(2)>Gth(1)), the Fermi level moves to F(2) to satisfy 

the necessary gain on the ground state and the excited state becomes higher 

populated. Thus, the excited state gain becomes higher than ground state and the 

lasing emission switches to the excited state (Fig. 2.6 b). As the temperature is 

increased the excited state also becomes more populated as well (Fig. 2.6 c) [22]. 

 

Fig. 2.6 Schematic population of QD density of states (solid curves) (a) at threshold, and (b) 

evolution of the population with increasing threshold gain and (c) temperature. DOS of the 

ground states and the first exited state are indicated by dotted curves [22]. 
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2.3 Unique QDs properties for ultrafast generation. 

2.3.1 Low threshold current density. 

Strained-QW lasers have shown low threshold current densities of 50 A/cm2 from 

2.05 µm [41] and 0.98 µm [42] lasers. QD-based devices also exhibit extremely low 

threshold current densities of 11.5 A/cm2 from 1.23 µm 5.1 mm-long QD laser, formed 

by atomic layer epitaxy due to low transparency current [28]. Single layer QD lasers 

formed by DWELL-designed active region, where InAs QDs are capped by InGaAs 

quantum well, exhibited threshold current densities of 26 A/cm2 with uncoated facets 

and up to 11.7 A/cm2 with HR-coated facets [43-45]. In addition, a 19.2 mm long oxide-

confined laser with two InAs QDs layers, emitting at 1.28 µm, had a 24 A/cm2 threshold 

current density [46]. As the compact QD-based structures do not require higher 

current injection, the carrier density is reduced as well as amplified spontaneous 

emission [47]. Spontaneous emission results in photon density, gain, and refraction 

index variations. Thus low spontaneous emission less affects the round-trip time and 

the timing of the pulses [48-49]. 
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2.3.2 Inhomogeneous broadening. 

An ideal QD-based laser would be temperature insensitive, generating single 

frequency emission with low threshold current density. But in reality lasers based on 

self-organized QDs are temperature-sensitive and exhibit broader spectral bandwidths 

(>200 nm) [50] than QW-based lasers (70 nm) [51]. The fundamental difference is 

associated with inhomogeneous broadening of energy levels because of QD size 

variations. The self-assembling of QDs that occurs during molecular beam epitaxy 

growth is one of the reasons for a Gaussian size distribution of QDs with a 

corresponding distribution of emission frequencies. This is also connected to variance 

of elastic strain in different parts of the wafer. The schematic morphology and density 

of states for charge carriers in an ideal quantum dot-based material compared to a real 

quantum dot-based material with inhomogeneous broadening effect are presented 

below in Fig. 2.7. 

 

Fig. 2.7 (top) Schematic Morphology and (bottom) the density of states for charge carriers in 

(a) an ideal quantum dot-based material and (b) a real quantum dot-based material with 

inhomogeneous broadening. 
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The inhomogeneous broadening effect can be very effectively used for the 

development of the amplifiers and femtosecond lasers with broad tunable range due 

to their wide bandwidth. Furthermore, currently available QD growth technologies 

enable a high degree of control over broadening by selecting QD layers with desirable 

size distribution (as discussed in Chapter 6). It is also important to take into account 

some of the disadvantages of a high level of the inhomogeneous broadening gain: the 

density of states broadened, increased transparency current and reduced modal and 

differential gain. Moreover, QD-based optical sources are not using full potential by 

generating the ultra short pulses which are one or two orders of magnitude broader 

than the inverse width of the inhomogeneously broadened gain spectrum. 
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2.3.3 Ultrafast carrier dynamics. 

It was predicted that by changing the geometry of the active region from QW to QD, 

the laser would suffer some limitations due to a phonon bottleneck effect - the effect 

of inefficient energy relaxation of charge carriers via phonon interaction [52-53]. The 

experimental results of QD-based lasers prove the assumption of low threshold 

current performance but at the same time disapproved an idea of a strong influence of 

the phonon bottleneck effect on its properties. Coulomb and exciton-phonon 

interaction studies have shown ultrafast carrier dynamics of QD structures both under 

gain and absorption conditions [54].  

Fast recovery time in quantum dot saturable absorbers was confirmed by the 

pump-probe technique [55-56]. A fast recovery time of the absorption was found 

around 1 ps which can be effectively used for mode-locking at high frequencies where 

the absorption recovery time should be shorter than the round-trip period of the 

cavity [55]. 

Despite the above the following QD properties should also be emphasized: lower 

absorption saturation fluence than in QW [57], suppressed carrier diffusion [58], and 

low temperature sensitivity [59].  

High characteristic temperature of the threshold current, T0, is a key factor for 

semiconductor lasers. The high value of T0 would make it possible to create heatsink-

free transmitter modules and reduce the cost. QD-based lasers are characterized by 

very deep localization of carriers in the active region (~400-450 meV) with respect to 

GaAs band edges [22]. Therefore, these devices can provide a temperature-

independent operation with T0> 650 K [59]. 
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2.4 Conclusion 

The unique structural, electronic and optical properties of self-organized QDs 

described in this chapter enable the use of semiconductor QD-based materials for 

developing the next generation of lasers, amplifiers and absorbers for a number of 

applications from high speed telecommunication to multiphoton imaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

 

2.5 References. 

[1] A. Krier, et al., "InAsSbP quantum dots grown by liquid phase epitaxy," Journal 

of Physics D: Applied Physics, vol. 32, p. 2587, 1999. 

[2] D. Z. Garbuzov, et al., "High-power 0.8 µm InGaAsP-GaAs SCH SQW lasers," 

Quantum Electronics, IEEE Journal of, vol. 27, pp. 1531-1536, 1991. 

[3] T. P. Pearsall, GaInAsP Alloy Semiconductor. Chichester: John Wiley & Sons Ltd, 

1982. 

[4] G. H. B. Thompson, Physics of semiconductor laser devices. Chichester: Wiley-

Interscience, 1980. 

[5] H. Kressel, et al., "Effect of Substrate Imperfections on GaAs Injection Lasers 

Prepared by Liquid Phase Epitaxy," Journal of Applied Physics, vol. 40, pp. 3587-

3597, 1969. 

[6] J. K. Butler, Semiconductor injection lasers. New York: IEEE Press, 1980. 

[7] Z. Li, et al., "High-power Al-free SCH-SQW lasers grown by LPE," Beijing, China, 

2005, pp. 223-227. 

[8] B. Baoxue, et al., "InGaAsP/GaAs SCH SQW laser arrays grown by LPE," Optics & 

Laser Technology, vol. 32, pp. 335-338, 2000. 

[9] M. J. Ludowise, "Metalorganic chemical vapor deposition of III-V 

semiconductors," Journal of Applied Physics, vol. 58, pp. R31-R55, 1985. 

[10] M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and 

Current Status, 2nd edition ed. Berlin: Springer-Verlag, 1996. 

[11] D. F. Welch, "A brief history of high-power semiconductor lasers," Selected 

Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1470-1477, 2000. 



38 
 

[12] A. Y. Cho, "Film Deposition by Molecular-Beam Techniques," Journal of Vacuum 

Science and Technology, vol. 8, pp. S31-S38, 1971. 

[13] R. D. Dupuis, "AlGaAs-GaAs lasers grown by metalorganic chemical vapor 

deposition - A review," Journal of Crystal Growth, vol. 55, pp. 213-222, 1981. 

[14] M. Sakamoto, et al., "High power, high brightness 2 W (200 µm) and 3 W (500 

µm) CW AlGaAs laser diode arrays with long lifetimes," Electronics Letters, vol. 

26, pp. 729-730, 1990. 

[15] D. F. Welch, et al., "High-power, 8 W CW, single-quantum-well laser diode 

array," Electronics Letters, vol. 24, pp. 113-115, 1988. 

[16] P. Crump, et al., "Extending the wavelength range of single-emitter diode lasers 

for medical and sensing applications: 12xx-nm quantum dots, 2000-nm wells, > 

5000-nm cascade lasers," SPIE, vol. 6456, 2007. 

[17] M. V. Maximov and et al., "A 1.33 µm InAs/GaAs quantum dot laser with a 46 

cm −1 modal gain," Semiconductor Science and Technology, vol. 23, p. 105004, 

2008. 

[18] D. G. Deppe, et al., "Quantum dot laser diode with low threshold and low 

internal loss," Electronics Letters, vol. 45, pp. 54-56, 2009. 

[19] B. Sumpf, et al., "High-Brightness Quantum Well Tapered Lasers," Selected 

Topics in Quantum Electronics, IEEE, vol. 15, pp. 1009-1020, 2009. 

[20] Z. Li, et al., "InGaAs Quantum Well Grown on High-Index Surfaces for 

Superluminescent Diode Applications," Nanoscale Research Letters, vol. 5, 

2010. 

[21] K. Paschke, et al., "15-W reliable operation of 96-μm aperture broad-area diode 

lasers emitting at 980 nm," in Lasers and Electro-Optics, 2008 and 2008 



39 
 

Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. 

Conference on, 2008, pp. 1-2. 

[22] V. M. Ustinov, et al., Quantum Dot Lasers. New York: Oxford University Press, 

2003. 

[23] H. Liu, et al., "Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well 

structure," Journal of Applied Physics, vol. 93, 2003. 

[24] L. Goldstein, et al., "Growth by molecular beam epitaxy and characterization of 

InAs/GaAs strained-layer superlattices," Applied Physics Letters, vol. 47, pp. 

1099-1101, 1985. 

[25] M. Grundmann, et al., "InAs/GaAs pyramidal quantum dots: Strain distribution, 

optical phonons, and electronic structure," Physical Review B, vol. 52, p. 11969, 

1995. 

[26] D. Bimberg, et al., "InAs-GaAs quantum dots: From growth to lasers," physica 

status solidi (b), vol. 194, pp. 159-173, 1996. 

[27] N. Liu, et al., "Nonuniform Composition Profile in In0.5Ga0.5As Alloy Quantum 

Dots," Physical Review Letters, vol. 84, p. 334, 2000. 

[28] D. Huffaker and D. Deppe, "Electroluminescence efficiency of 1.3 µm 

wavelength InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 73, 1998. 

[29] N. Kirstaedter, et al., "Gain and differential gain of single layer InAs/GaAs 

quantum dot injection lasers," Applied Physics Letters, vol. 69, 1996. 

[30] P. Smowton, et al., "Optical mode loss and gain of multiple-layer quantum-dot 

lasers," Applied Physics Letters, vol. 78, 2001. 

[31] J. Chen, et al., "Nanostructure model and optical properties of InAs/GaAs 

quantum dot in vertical cavity surface emitting lasers," Opto-electronics review, 

vol. 19, 2011. 



40 
 

[32] P. M. Petroff and S. P. DenBaars, "MBE and MOCVD growth and properties of 

self-assembling quantum dot arrays in III-V semiconductor structures," 

Superlattices and Microstructures, vol. 15, pp. 15-15, 1994. 

[33] J. Tersoff, et al., "Self-Organization in Growth of Quantum Dot Superlattices," 

Physical Review Letters, vol. 76, p. 1675, 1996. 

[34] D. Leonard, et al., "Critical layer thickness for self-assembled InAs islands on 

GaAs," Physical Review B, vol. 50, p. 11687, 1994. 

[35] J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers: I. Misfit 

dislocations," Journal of Crystal Growth, vol. 27, pp. 118-125, 1974. 

[36] J. Matthews, et al., "Accommodation of Misfit Across the Interface Between 

Crystals of Semiconducting Elements or Compounds," Journal of Applied 

Physics, vol. 41, 1970. 

[37] J. W. Matthews, "Defects associated with the accommodation of misfit 

between crystals," Journal of Vacuum Science and Technology, vol. 12, pp. 126-

133, 1975. 

[38] J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers: III. 

Preparation of almost perfect multilayers," Journal of Crystal Growth, vol. 32, 

pp. 265-273, 1976. 

[39] M. Grundmann, et al., "Nature of optical transitions in self-organized InAs/GaAs 

quantum dots," Physical Review B, vol. 53, p. R10509, 1996. 

[40] A. Y. Egorov, et al., "Optical emission range of structures with strained InAs 

quantum dots in GaAs " Semiconductors, vol. 30, 1996. 

[41] G. W. Turner, et al., "Ultralow-threshold (50 A/cm2) strained single-quantum-

well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm," Applied Physics Letters, 

vol. 72, 1998. 



41 
 

[42] N. Chand, et al., "Excellent uniformity and very low (<<50 A/cm2) threshold 

current density strained InGaAs quantum well diode lasers on GaAs substrate," 

Applied Physics Letters, vol. 58, pp. 1704-1706, 1991. 

[43] P. Eliseev, et al., "Transition dipole moment of InAs/InGaAs quantum dots from 

experiments on ultralow-threshold laser diodes," Applied Physics Letters, vol. 

77, 2000. 

[44] G. Liu, et al., "Extremely low room-temperature threshold current density 

diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electronics Letters, 

vol. 35, pp. 1163-1165, 1999. 

[45] H. Y. Liu, et al., "High-performance three-layer 1.3 µm InAs-GaAs quantum-dot 

lasers with very low continuous-wave room-temperature threshold currents," 

Photonics Technology Letters, IEEE, vol. 17, pp. 1139-1141, 2005. 

[46] X. Huang, et al., "Efficient high-temperature CW lasing operation of oxide-

confined long-wavelength InAs quantum dot lasers," Electronics Letters, vol. 36, 

pp. 41-42, 2000. 

[47] T. W. Berg and J. Mork, "Quantum dot amplifiers with high output power and 

low noise," Applied Physics Letters, vol. 82, pp. 3083-3085, 2003. 

[48] E. U. Rafailov, et al., Ultrafast lasers based on quantum-dot structures: physics 

and devices: Wiley-VCH, 2011. 

[49] P. Vasil'ev, Ultrafast Laser Diodes: Fundamentals and Applications. London: 

Artch House, 1995. 

[50] K. A. Fedorova, et al., "Broadly tunable high-power InAs/GaAs quantum-dot 

external cavity diode lasers," Opt. Express, vol. 18, pp. 19438-19443, 2010. 

[51] S. V. Nalivko, et al., "Design and characteristics of widely tunable quantum-well 

heterostructure lasers in the Littman and Metcalf cavity configuration," in 



42 
 

Transparent Optical Networks, 1999. International Conference on, 1999, pp. 

215-218. 

[52] K. Mukai, et al., "Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum 

dots by electroluminescence and time-resolved photoluminescence," Physical 

Review B, vol. 54, p. R5243, 1996. 

[53] H. Benisty, et al., "Intrinsic mechanism for the poor luminescence properties of 

quantum-box systems," Physical Review B, vol. 44, p. 10945, 1991. 

[54] P. Borri, et al., "Ultrafast carrier dynamics in InGaAs quantum dot materials and 

devices," Journal of Optics A: Pure and Applied Optics, vol. 8, p. S33, 2006. 

[55] E. U. Rafailov, et al., "Fast quantum-dot saturable absorber for passive mode-

locking of solid-state lasers," IEEE Photonics Technology Letters, vol. 16, pp. 

2439-2441, 2004. 

[56] P. Borri, et al., "Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs 

Quantum-Dot Amplifiers," IEEE Journal of Selected Topics in Quantum 

Electronics, vol. 6, 2000. 

[57] M. G. Thompson, et al., "Properties of InGaAs quantum dot saturable absorbers 

in monolithic mode-locked lasers," in Semiconductor Laser Conference, 2004. 

Conference Digest. 2004 IEEE 19th International, 2004, pp. 53-54. 

[58] S. A. Moore, et al., "Reduced surface sidewall recombination and diffusion in 

quantum-dot lasers," Photonics Technology Letters, IEEE, vol. 18, pp. 1861-

1863, 2006. 

[59] S. S. Mikhrin, et al., "High power temperature-insensitive 1.3 µm 

InAs/InGaAs/GaAs quantum dot lasers," Semiconductor Science and 

Technology, vol. 20, p. 340, 2005. 

 



43 
 

Chapter 3. Ultrashort pulse generation. 

3.1 Main techniques for ultrashort pulse generation. 

3.1.1 Gain switching and Q-switching. 

  There are several techniques for producing ultra-short pulses from semiconductors 

lasers such as: gain switching, Q-switching and mode-locking [1-2]. Gain switching   

(Fig. 3.1) is the easiest technique for generation of short pulses that doesn’t involve 

any external cavity or sophisticated drive electronics [3-4]. The main idea consists of 

the injection of a large number of carriers (electrons) by electrical pulses, which 

increase in turn the carrier density above the threshold. As the result the carriers are 

quickly depleted by stimulation emission, generating optical pulses shorter than 

electrical ones at that [5]. The carrier density then decreases below the threshold 

density and the lasing process stops before the next electrical pulse is introduced.  

Q-switching is achieved by changing the cavity loss actively using an external 

modulator (Fig. 3.2) or passively via a saturable absorber (Fig. 3.3) which switches the 

cavity Q factor from a low to a high value [6-7].  This technique allows the generation 

of pulses with high (gigawatt) peak power called giant pulses. The Q factor is a 

dimensionless parameter which describes how under-damped an oscillator or 

resonator is. The Q factor is defined by the ratio of the energy stored in the resonator 

to the energy supplied by a generator, per cycle, to keep signal amplitude constant, at 

a frequency f, where the stored energy is constant with time (Eq. 3.1) [8]. 

 

, = 2. ∗ /01
/2300 = 2.4 ∗ /01

56700      (3.1), 

where Q – quality factor, Est-energy stored, Ediss-energy dissipated per cycle, f-frequency, Ploss-

power loss per cycle. 
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A higher Q indicates a lower rate of energy loss relative to the stored energy of the 

oscillator. In active Q-switching, the electric field is applied to the modulator section in 

order to vary the loss. For example, the quantum confined Stark effect can be used 

which causes the shift of the exciton absorption peak to lower energies. Commonly 

used methods for active Q-switching are based on electro-optical switches, rotating 

prisms or acousto-optic modulators by way of an external drive source (Pockel cell 

voltage power supply, rotating motor or RF oscillator). The passive Q-switching 

method of generating short pulses is based on the non-linear absorption behaviour of 

the absorber, a material which transmission increases after the intensity exceeds some 

threshold. Due to high losses in the absorber initially the laser doesn’t emit any light. 

As the laser is further pumped, the amount of the energy stored in the laser cavity 

increases until the absorber is saturated. At that point the absorber rapidly reduces 

the cavity loss (bleaches) and the laser has a gain well in excess of the losses as shown 

in Fig. 3.3. As a result, all stored energy is extracted by a pulse called “giant”.  

 

 

 

 

Fig.3.1 Gain switching laser 

dynamics a) applied 

current, b) carrier density 

and c) optical power [11]. 

Fig.3.2 Active Q-switching 

laser time evolution of a) 

loss, gain and b) optical 

power [11]. 
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After the pulse, the absorber recovers to its high-loss state, before the gain recovers, 

and next pulse is produced. Using this technique, the repetition rate can be controlled 

only indirectly by the pump rate and the mount of the absorber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3 Passive Q-switching 

laser time evolution of a) 

loss, gain and b) optical 

power [11]. 
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3.1.2 Mode-locking techniques in semiconductor lasers. 

Alternatively, the mode-locking technique can be used by locking the longitudinal 

modes of the laser together allowing the generation of short pulses (Fig. 3.4). It is the 

most interesting technique for optical data/tele-communication and imaging of the 

biological samples as it is possible to generate much shorter pulses at much higher 

repetition rates and often with low timing jitter compared to gain-switching and Q-

switching. Formation of the cavity longitudinal modes in the gain bandwidth enables 

the generation of pulses as short as 393 femtoseconds [9].  If instead of oscillating 

independently, each mode in the laser cavity operates with a fixed phase between it 

and the other modes (Eq. 3.2) all modes of the laser will constructively interfere with 

one another, producing an intense burst or pulse of light with a constant repetition 

rate => (Eq. 3.3). In reality, not all the modes have the same phase and as a result not 

all laser gain bandwidth is effectively used for generating ultra-short pulses.  

 

Fig.3.4 Cavity longitudinal mode formation. 

89 − 89;< = 8   (3.2), 

where 8 is a constant, 89- �-th longitudinal mode. 
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=> = ?
�@A   (3.3), 

Where Δν- the frequency difference between consecutive longitudinal modes, c- speed of 

light, L-the length of the cavity, n- refractive index. 

The total oscillating bandwidth ΔνL (ΔνL=N*Δν, N-number of modes) is related to pulse 

width ΔτP if the mode-locking phase relation condition is kept (Eq. 3.3) by the relation 

Eq. 3.4. Thus the more modes are in phase the shorter pulses can be produced. 

∆C5 = D
∆EF   (3.4), 

where � is a numerical factor. 

The numerical factor � depends on the shape of the spectral intensity distribution. For 

example, for Gaussian pulse shape � is 0.4413 while for Lorentzian is 0.2206. A pulse 

that satisfies this condition (Eq. 3.4) is said to be transformed-limited. 

There are three main techniques for mode-locking: (1) Active mode-locking and (2) 

passive mode-locking (Fig. 3.5 and 3.6) which are possible when the laser resonator 

includes an optical modulator or saturable absorber accordingly [10-11], (3) hybrid 

mode-locking which is defined by gain/loss modulation applied to an external cavity or 

multiple section lasers in contrast to active mode-locking where it’s applied to a single 

contact laser. 

Active mode-locking can be induced by an amplitude modulator (AM mode-locking), by 

a phase modulator (FM mode-locking), or by a periodic modulation of laser gain at the 

fundamental cavity frequency (ML by synchronous pumping). The main idea is 

achieving locking of the modes by modulating the loss or gain of a laser at a frequency 

of the intermodal spacing	=> so that each spectral mode is driven by the modulation 
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sidebands of its neighbours [12].The modulation of the gain can be achieved by 

external modulator or by modulating the driving current as shown in Fig. 3.5. 

 

 

 

 

 

 

 

 

 

 

Fig.3.5 Active mode-locking laser dynamics of a) drive current, and b) optical power [11]. 

 

Passive mode-locking is achieved by inserting an element called a saturable absorber in 

the cavity which is then saturated quicker than the gain of the laser, and also has a 

recovery time faster than the gain, thus forming a narrow net gain window for 

formation of the pulses (Fig. 3.6). 

 

 

 

 

 

 

 

     

 

 

Fig.3.6 Passive mode-locking laser dynamics of a) loss, gain b) carrier density and c) optical 

power [11]. 
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The pulse repetition rate in passive mode-locking is defined by the round-trip time of 

the laser cavity and does not depend on the pumping conditions; while in passive Q-

switching the pulse repetition rate is set by the amplitude of the driving currents. A 

performance summary of the main techniques for ultrashort pulse generation is 

presented in table 3.1. Timing jitter is presented as well which relates to the 

fluctuations of the temporal positions of pulses from those in a perfectly periodic pulse 

train. 

Table 3.1 A performance summary of the main types of short pulse generation techniques for 

electrically pumped semiconductor lasers. 

Technique Pulse 

Width 

Repetition Rates Pulse 

Energy 

Control of repetition 

rate/Jitter 

References 

Gain 
Switching 

<1.3 ps 250 MHz-20 GHz 5 nJ Good control via electrical 
drive/ Jitter-160 fs 

[13-19] 

Passive Q-
switching 

1.6 ps 32.5 MHz-20 GHz 300 pJ Limited control / 

Jitter- 800 fs 

[20-26] 

Active Q-
switching 

1.2 ps <100 MHz- 10.5 GHz 470 pJ Set by electrical drive/ 

Jitter- 250 fs 

[27-34] 

Passive 
Mode-
Locking 

240 fs 191 MHz-2.1 THz 60 pJ Set by cavity length/ 

Jitter- 100 fs  

[9, 35-44] 

Active 
Mode-
Locking 

560 fs 660MHz-193 GHz 3 pJ Set by cavity length/ 

Excellent jitter- 7.5 fs  

[45-49] 
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3.1.3 Saturable absorber for passive mode-locking.  

Saturable absorbers can be classified by their recovery time as either fast (ps) or slow 

(ns), depending on whether their recovery time is longer or shorter than the pulse 

duration, respectively. In semiconductors for short pulse generation a combination of 

a slow saturable absorber and gain saturation is used. In order to achieve stable mode-

locking the saturation energy of the absorberGHIJJHK should be less than of the gain 

medium	GQHRAJHK  (Eq. 3.5): 

GHIJJHK ≡ MEN
OH

OA�
P

MEN
OQ

OA�
≡ GQHRA

JHK    (3.5), 

where h-Plank’s constant, ν-optical frequency, A-optical mode cross-sectional area, �� ��� -

differential loss,
��

��� - differential gain, a- absorber, g- gain. 

In other words, differential loss �� ���  should be higher than differential gain 
��

��� - 

as shown in Fig. 3.7. 

 

Fig. 3.7 Gain/loss dynamics versus carrier concentration for successful mode-locking in laser 

diodes [4]. 

The absorber’s recovery time plays a crucial role in terms of ultrashort pulse 

generation in high repetition rate lasers. It is important for forming narrow net gain as 

shown in Fig. 3.6. If this requirement is met than the gain overcomes the loss only near 

the peak of the pulse and the spontaneous emission is not amplified between the 



51 
 

pulses. Looking at frequency domain description of mode-locking, the burst of noise is 

the result of an instantaneous phase locking occurring among a number of modes. The 

self-saturation at the saturable absorber then helps to sustain and strengthen self-

starting mode-locking. The saturation fluence Г of the gain (Eq. 3.6) and absorber (Eq. 

3.7) must be low enough in order be saturated by the intracavity laser fluence. 

ГQHRA
JHK �

ME

NS
   (3.6), 

ГHIJ
JHK �

ME

NT
  (3.7), 

where Ag and Aa-cross sections of the gain and absorber respectively. 

The QD saturable absorber’s recovery is associated primarily with thermionic emission 

and tunnelling mechanisms [50-52]. At low reverse bias applied to the absorber a 

recovery time of around 62 ps was observed. It was not governed by recombination 

processes but by the thermal activation of the electrons from the QD ground state into 

excited QD states with subsequent emission into the GaAs matrix. As higher reverse 

bias was applied, the decrease in the absorption recovery time down to 700 fs was 

observed. The tunnelling electron escape mechanism from the QD ground state into 

the GaAs barrier becomes dominant as the barrier height is lowered from Eb0 to Eb by 

electric field and a triangular barrier is formed as shown in Fig. 3.8 [50]. 

 

 

 

 

 

 

 

Fig. 3.8 Tunnelling electron’s escape mechanism with applied electric field [53]. 
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3.2 State of the art of Mode-locking.  

3.2.1 Quantum well lasers. 

GaAs based semiconductor quantum well mode-locked lasers have been developed 

over the past 20 years (see table 3.2). They can generate ultrashort transform-limited 

pulses [54-55]. For example, hybrid mode-locking 830 nm laser in external cavity 

configuration in order to get low 335 MHz repetition rate with amplification and 

compression stages generated 460 fs transform-limited pulses, resulting in a peak 

power of 72 W which can be improved up to 160 W by using a cubic compensator for 

the generation of 200 fs [54]. The highest repetition rate of 2.1 Thz was achieved by 

compound cavity mode locking 860 nm double QW laser with 2.2 mW average power 

and 0.24 ps pulses [36]. Furthermore, InGaAs and GaInAsP quantum well lasers were 

developed as shown in table 3.3.  

 

Table 3.2 Overview of mode-locked InGaAs quantum well lasers with following characteristics: 

τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, frep- pulse repetition 

rate, Ppeak–peak power, TBWP- Time bandwidth product, NL- number of layers, n/a-not 

applicable. The best performances are in bold. 

 

NL ML 

regime 

Setup τp 

(ps) 

λ 

(nm) 

Δλ 

(nm) 

frep 

(GHz) 

Ppeak 

(W) 

TBW

P 

Ref Year 

4 Active/ 

Passive/

Hybrid 

External 9/  

2.5/  

2.7 

840 0.75/ 

1.68/ 

1.87 

5.5 0.02/  

0.07/  

0.06 

2.9/ 

1.8/  

2.2 

[56-57] 1991 

4 Active/ 

Passive/

Hybrid 

Monolithic 13/  

6.5/  

10 

840 0.77/ 

0.93/ 

1.26 

5.5 0.013/ 

0.028/ 

0.018 

4.3/  

4.0/ 

3.5 

[56-57] 1991 

4 Passive/ 

Hybrid 

Monolithic 5.5/ 

2.2 

840/ 

1580 

1.29/ 

4.16 

11/ 

21 

0.096/ 

0.013 

3/ 

1.1 

[56] 1992 

4 Colliding 

pulse 

Monolithic 1.3 1580 4.99 41 0.015 0.78 [56, 58] 1992 

n/a Hybrid External+SOA 5.1 830 2.5 0.335 72 5.44 [54] 1992 
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compression (0.46) (3.2) (0.44) 

n/a Hybrid External+SOA 

Compression 

0.2 830 n/a 0.335 165 n/a [54] 1992 

3 Colliding 

pulse  

Monolithic 0.26 1555 n/a 1540 0.04 n/a [35, 42] 1994 

3 Passive 

 

Monolithic/ 

single contact 

0.86 1024 n/a 116 0.06 n/a [59] 1995 

3 Passive External 3.3 980 n/a n/a >2 n/a [60] 1995 

2 Passive External 3.5 1550 n/a 9.32 n/a n/a [61] 1998 

2 Passive  Monolithic 0.24 860 n/a 2100 0.004 n/a [36] 2001 

6 Passive External  1.7 1300 n/a 25 ~0.047 n/a [62] 2004 

1 Hybrid External 

Compression 

27.1 

(3.4) 

976 0.6 0.535 0.26 0.64 [63] 2005 

1 Passive External 

Compression 

38.2 

(8.8) 

976 n/a 0.535 n/a n/a [63] 2005 

1 Passive  Monolithic 8.3 1305 n/a 9.48 n/a n/a [64] 2007 

n/a Passive Monolithic 0.7 1631 5.49 37.9 n/a 0.5 [65] 2009 

n/a Passive Monolithic 1.8 1564 4.6 38 n/a 1 [66] 2009 

2 Colliding-

pulse 

Monolithic 1.84/

2 

830 0.55/0.

5 

19.75 0.46/0.

67 

0.44 [55] 2011 

 

Compared to InGaAs, InGaAsP laser showed the highest repetition rate of 860 GHz at 

1265 nm using colliding pulse harmonic mode-locking technique [67]. For generating 

higher power slab coupled lasers were fabricated from the same material [41, 68].  A 

peak power of 5.8 W was delivered from a 4.3 GHz InGaAsP laser incorporating 5 

quantum well layers with 10 ps pulses at 1544 nm wavelength [41]. Recently, up to 200 

fs optical pulses were generated with high peak power of 52 W from an 830 nm QW 

laser at 266 MHz repetition rate in external cavity configuration with intracavity 

dispersion management and a grating compressor [69]. An alternative material growth 

such as GaInNAsSb can be used for the development of passively mode-locked laser 

emitting at 1583 nm [64, 70].  
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Table 3.3 Overview of mode-locked InGaAsP quantum well lasers lasers with following 

characteristics: τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, frep- 

pulse repetition rate, Ppeak–peak power, TBWP- Time bandwidth product, NL- number of layers, 

n/a- not applicable. The best performances are in bold. 

 

NL ML regime Setup τp 

(ps) 

λ 

(nm) 

Δλ 

(nm) 

frep 

(GHz) 

Ppeak 

(W) 

TBWP Ref Year 

6 Hybrid Monolithic 1.4 1300 n/a 15.1 n/a n/a [71] 1989 

5 Passive Monolithic 1/0.8

3 

1515/

1545 

2.68/

2.89 

156/  

80 

n/a 0.34/ 

0.31 

[72] 1992 

5 Passive Monolithic 0.64 1560 4 350 n/a 0.32 [72] 1992 

6 Colliding-

pulse 

harmonics 

Monolithic n/a ~126

5 

n/a 860 n/a n/a [67] 1997 

n/a Passive Monolithic 1.2 1584 12.6 ~37 n/a 1.8 [73] 1999 

8 Passive Monolithic 0.41 1550 6.8 133 n/a 0.35 [74] 2002 

1/ 

2/ 

3 

Passive Monolithic 2.8/ 

4.5/ 

4.9 

1531/ 

1556/ 

1574 

1.1/ 

0.7/ 

1.1 

39.63/ 

39.46/ 

39.49 

0.064 

0.05/ 

n/a 

0.4/ 

0.39/ 

0.66 

[75] 2004 

5 Passive Monolithic 

Slab coupled 

10  1544 5.7 4.29 5.8 7.5 [41] 2006 

1 Passive Monolithic 0.86 1540 5 21.31 0.5 0.57 [76] 2008 

5 Passive Monolithic 

Slab coupled 

5.8 1550 ~6 4.6 ~2  ~4.3 [68] 2008 

2 Passive External 

(compression) 

7.4 

(0.2) 

830 1.8  

(6.48) 

0.266 3.2 

(52) 

5.7 

(0.58) 

[69] 2010 
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3.2.2 Quantum dot lasers. 

Unfortunately, traditional quantum well lasers based on GaAs operate in the range of 

635-nm to 1100-nm while InP-based devices operate from 1280-nm to 2000-nm, as a 

result a region from 1100 to 1280-nm is not covered [77]. 1310 nm wavelength as the 

central O band is very important for data- and telecommunications. Moreover, 

wavelengths from 1240 nm to 1300 nm are transparent to Si waveguide and 

detectable by SiGe photodetectors, for intra-chip / inter-chip clocking and signalling 

applications. Thus InAs Quantum-Dot based devices on a GaAs substrate became very 

promising due to 1.1-1.3 µm emission wavelength, combined with ultrashort pulse 

generation using mode-locking techniques. The first passive mode-locked InAs QD 

based laser was built in 2001 by Huang et. al.[78]. In this report, 17 ps pulses were 

produced by 2-layer QD 1278 nm laser at 7.4 GHz frequency with highly chirped pulse 

with time bandwidth product of 3.1 [78]. The highest repetition rate of 238 GHz was 

achieved by a GaAs based quantum-dot laser in colliding-pulse mode-locking regime 

[79]. Here, transform-limited pulses of 1.3 ps duration are generated with 1.4 nm full-

width half-maximum of optical spectra at 1280 nm wavelength. A great step forward 

was made when 3 Watt peak power was achieved by a 5 -layer QD-based 1.26 µm 

laser with 390 fs optical pulses [9, 80]. In 2006 a tapered design of the gain section was 

proposed and the first QD passive mode-locked tapered laser was realized [38]. Close 

to transform-limited pulses of 790 fs were generated at 1276 nm wavelength with a 

peak power of 500 mW. In this context, further development of tapered geometry QD 

lasers in term of power and ultrashort pulse generation was implemented [39, 44]. 

GaAs based 10-layer QD lasers, working in passive mode-locked regime, generated 360 

fs pulses at 17 GHz frequency. The emission wavelength was centred at 1280 nm with 
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optical spectra of 5.56 nm resulting in TBWP of 0.36. A peak power up to 2.25 W was 

achieved [39, 44]. A high peak power up to 17.7 W was attained by our group and will 

be discussed, in detail, in Chapter 8 [40]. QD-based external-cavity configuration lasers 

are excellent candidates for systems where a reduced and broadly tunable repetition 

rate is required which is not achievable with monolithic mode-locked lasers [44, 49, 

81-85]. It is particularly important for nonlinear multiphoton excitation fluorescence 

bioimaging [86-88]. A high peak power of 1.5 W in an external cavity configuration was 

demonstrated and a lowest repetition rate of 191 MHz was attained by our group as 

described in Chapter 7 [37, 89-90]. Very recently, InAs/GaAs QD-based lasers grown on 

Ge and Si substrates were reported although with just 26-28 mW output powers [91-

92]. These may be very promising devices as the potential for mass production and 

creation of complex optoelectronic circuits for optical communications. 

 

Table 3.4 Overview of mode-locked InAs/GaAs Quantum Dot lasers with following 

characteristics: τp-pulse duration, λ-emission wavelength, Δλ- full width half maximum, frep- 

pulse repetition rate, Ppeak–peak power, TBWP- Time bandwidth product, NL- number of layers, 

n/a- not applicable. The results highlighted in green are shown in more detail in the thesis. In 

blue the results which are achieved by group in the past. The best performances are in bold. 

 

NL ML regime Setup τp 

(ps) 

λ 

(nm) 

Δλ 

(nm) 

frep 

(GHz) 

Ppeak 

(W) 

TBWP Ref Year 

2 Passive Monolithic 17 1278 1 7.4 ~0.02 3.1 [78] 2001 

3 Hybrid Monolithic 14.2 1107 0.8 10 0.004 2.8 [93] 2003 

3 Passive Monolithic 5 1107 0.8 18.3 0.005 0.9 [94] 2003 

5 Passive Monolithic 1.7 1277 0.86 9.7 0.06 0.27 [95] 2004 

5 Passive  Monolithic 7 1283 ~0.4 35 0.006 ~0.5 [96] 2004 

5 Hybrid Monolithic 11 1286 ~0.22 20 n/a 0.44 [96] 2004 

5 Passive Monolithic 3 1281 0.8 50 0.006 0.44 [97] 2004 

10 Passive Monolithic 10 1291 0.2 18 0.002

5 

0.36 [98] 2004 

10 Passive Monolithic 3.2 1260 7.1 5 1.7 4.3 [99] 2005 
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n/

a 

Passive Monolithic 5.7 1264 4.5 5.2 0.29 4.8 [100] 2005 

5 Passive Monolithic 0.39 1260 14 21 3 1 [9, 

80] 

2005 

3 Colliding-

pulse 

Monolithic 7 1107 0.32 20 0.013 0.54 [101] 2005 

10 Passive External+SOA 

(Compression) 

15 

(1.2) 

1268 3.1 4.95 1.22 6 

(0.69) 

[83] 2005 

10 Passive External+SOA 

(compression) 

14 

(0.97) 

1275 6 2.7 n/a 15.5 

(1.1) 

[84] 2006 

10 Passive External+SOA 

(compression) 

10.8 

(1.2) 

1193 4.25 2.7 n/a 9.7 

(1.1) 

[84] 2006 

10 Active External 24 1269 2 12.77 n/a 10 [49] 2006 

5 Colliding-

pulse/ 

harmonic 

Monolithic 1.3 1280 1.4 238 0.01 0.33 [79] 2006 

10 Hybrid Monolithic 0.71 1280 n/a 20 n/a n/a [102] 2006 

10 Passive Monolithic 1.5 1280 6.18 80 n/a 1.7 [102] 2006 

5 Passive Monolithic 7 1190 5.5 21 0.156 8.1 [103] 2006 

5 Passive Monolithic  

(tapered 

waveguide) 

0.79 1276 3.6 24 0.5 ~0.5 [38] 2006 

10 Passive Monolithic 1.8 1300 ~2.2 39.87 n/a 0.72 [104] 2006 

10 Passive Monolithic 1.5 1300 ~6.4 80 n/a 1.7 [104] 2006 

15 Hybrid Monolithic 

(SOA) 

0.7 

(0.7) 

1300 8.5 20 0.13 1.1 [105] 2006 

15 Hybrid Monolithic 

(SOA) 

1.8 

(1.9) 

1300 2.2 40 0.014 0.7 [105] 2006 

15 Passive Monolithic 

(SOA) 

1.9 

(2.2) 

1300 4.2 80 0.011 1.5 [105] 2006 

9 Passive/ 

Hybrid 

External n/a 1205 n/a 0.35-

1.5 

n/a n/a [81] 2007 

10 Passive Monolithic 1.9 1300 n/a 19.46 0.07 n/a [106] 2007 

6 Passive Monolithic 6.4 1216 2.6 7.2 0.224 3.4 [107] 2007 

6 Passive/ 

harmonic 

Monolithic 

 

6 1216 2.6 50.7 0.07 3.2 [107] 2007 

6 Passive/ 

harmonic 

Monolithic 6.6 1216 1.7 42.4 0.234 2.3 [107] 2007 

6 Passive Monolithic 5.7 1240 ~4.5 4.97 1.04 ~0.5 [64] 2007 

10 Passive/ 

harmonic 

Monolithic 

(compression) 

9.8 

(0.96) 

1260 5.5 5 >1 10  

(1) 

[108] 2008 

10 Passive/ 

harmonic 

Monolithic 

(compression) 

8.6 

(0.58) 

1260 7.2 40 >1 12 (0.8) [108] 2008 

5 Passive External 0.93 1300 2.3 1(0.31) 0.41 0.385 [82, 

85] 

2008(

11) 

10 Passive Monolithic 

(tapered 

waveguide) 

0.36 1280 5.56 17 2.25 0.36 [39, 

44] 

2008(

9) 

5 Passive Monolithic ~1 1300 ~5.6 40 ~0.2 ~1 [109] 2009 
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6 Passive Monolithic 10 1209 2.8 10.2 ~0.11 ~5.7 [110] 2009 

5 Passive Monolithic 2 1300 n/a 10 n/a n/a [111] 2009 

15 Passive/ 

Hybrid 

Monolithic 

(compression) 

1.6 

(0.7) 

1310 ~1.2 

(0.5) 

40 n/a 

(0.00

6) 

1.4 

(0.8) 

[112] 2010 

6 Passive Monolithic 5.7 1240 ~5 4.97 1.04 ~5.5 [113] 2010 

8 Passive Monolithic 5 1240 4.3 4.97 n/a 4.2 [113] 2010 

6 Passive Monolithic 6 1270 n/a 12.105 n/a n/a [114] 2010 

6 Passive Monolithic 3.3 1207 n/a 12.321 n/a n/a [114] 2010 

10 Passive External 13.6 1274 1.2 1.14 1.5 3.02 [89] 2010 

5/

10 

Passive Monolithic 3.2/ 

3.3 

1250/

1260 

7.3/ 

8.4 

14.65/

14.57 

3.6 4.4/  

5.2 

[115] 2010 

10 Passive External 12 1268 4 0.281 

(0.191) 

0.5 ~8.9 [37, 

90] 

2011 

5 Passive External 2.2 1300 5.3 1.1 0.16 2.1 [82] 2011 

8 Passive Monolithic 2.7 n/a n/a 5 n/a n/a [116] 2011 

15 Passive Monolithic 1.2 1300 n/a 40 n/a n/a [117] 2011 

10 Passive Monolithic 1.26 1260 5.6 10 17.7 1.33 [40] 2011 
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3.3 Conclusion. 

QW-based devices exhibited good performances such as: high repetition rate (up to 

2.1 THz) [36], short pulse generation down to 200 fs using a pulse compression 

technique [69] and high pulse energy generation around 60 pJ [41] but the emission 

wavelength was 860 nm, 830 nm and 1.5µm respectively. The emission wavelengths of 

QD-based devices can be in the range of 1100 nm- 1300 nm which is important for a 

variety of applications including metro networking and multiphoton imaging. The QD-

based lasers offer several advantages such as low threshold current density, 

temperature-insensitivity and single-frequency generation due to discrete nature of 

the density of state of QD materials. In addition, ultrafast carrier dynamics of the QD 

absorber are very useful for generating ultrashort pulses using the mode-locking 

technique. For example, it was shown in our group that it is possible to generate 393 fs 

pulses directly from a QD-based device [9]. In  Chapters 5 through 8 the latest results 

achieved from QD-based lasers will be discussed, in more detail (see Table 3.4 

highlighted in green), including the generation of a high peak power of 17.7 W directly 

from monolithic tapered gain-guided lasers without use of compression and 

amplification techniques [40]. In addition, the generation of optical pulses with a 

record-low repetition rate of 191 MHz [37, 90] and high peak power of 1.5 W and pulse 

energy of 25 pJ directly from the oscillator using an external cavity configuration [89]. 
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Chapter 4. Characterization of QD-based devices under mode-

locking regime. 

The description of the technique and the experimental setups which were used 

during the experiments for characterising different type’s lasers are presented. 

4.1 Characterization techniques.    

4.1.1 Pulse shape and duration.  

Direct measurement of laser pulses can be realised by digital sampling oscilloscopes 

in which the bandwidth is limited to 60 GHz [1]. As the frequency domain is related to 

the time domain (Eq. 4.1) the full-width half-maximum of the pulse (τFWHM) for 60 GHz 

digital sampling oscilloscope would be 7.3 ps assuming a Gaussian pulse shape of the 

signal.  

τFWHM=0.44/f3dB    (4.1) 

where f3dB- frequency bandwidth at 3 dB. 

However, it is important to understand that the minimum possible measured pulse 

should be longer than 7.3 ps. The observed pulse duration depends on the 

bandwidths/rise times of the signal, photodiode and the oscilloscope. The rise time is 

the time different between the 10% point and the 90% point of the peak amplitude 

output on the leading edge of the pulse. Thus the measured pulse duration is 

calculated by the root of the sum of the squares of the rise times of the equipment 

involved and the signal (Eq. 4.2). 

τMEASUREMENT =UCVJ?� + CXMVKVYRVYZ�+CJRQAH9�     (4.2), 

where τosc-rise time of the oscilloscope, τphotodiode-rise time of the photodiode, τsignal- actual 

pulse width. 
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In order to keep the error of observation between the actual and observed rise 

times to less than 3 %, the ratio of signal risetime to scope rise time should be greater 

than 4:1. In addition, considering that the rise time of the 29 GHz photodiode is ~15 ps, 

only ~20ps optical pulses can be measured with a large bandwidth digital sampling 

oscilloscope [2-3]. Alternatively, streak cameras can be used for direct measurement of 

the pulses as short as 200 fs but only for wavelengths from 280 nm up to 850 nm [4-5]. 

The time resolution of streak cameras in the infrared range is only few picoseconds [6]. 

In order to measure pulses with good resolution up to 1 fs in the infrared range, 

indirect methods of pulse measurement have been developed [7-8]. The most simple 

and relatively chip technique is autocorrelation when information of phase of the 

pulse is not required.  In Fig. 4.1 the general setup of autocorrelation is depicted. The 

principle of operation is based on a Michelson Interferometer which is used for 

recording the second order correlation function. An incident pulse with electric field 

E(t) is split into two branches by a beam splitter. The two replicas are used for 

generation of a time delay τ between them by means of two independent delay lines 

(fix and variable).  After that those replicas E(t) and E(t+τ) are recombined in a 

nonlinear crystal for generation second harmonic signal ISH. The intensity of this signal 

is proportional to square of the sum of the electrical signals (Eq.4.3). 

 

[\]^_ + C`~bG^_` + G^_ + τ`d�            (4.3), 

where ISH- intensity of second harmonic signal; E(t), E(t+τ)- Amplitude of original and time 

delayed replicas 

 

 When the square in equation 4.3 is expanded the component of the second 

harmonic is present (Eq. 4.4) due to the temporal overlap of the two pulses. So, the 
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second harmonic signal will be generated only when two pulses are overlapping in 

time.  

[\]^_ + C`~G^_`� W 2G^_`G^_ W C` W G^_ W C`�     (4.4) 

 

 

Fig. 4.1 Top view schematic of the autocorrelator. SHG- Second harmonic generation, PMT- 

Photomultiplier tube. 

 

As can be seen from Fig. 4.1, two beams enter the crystal noncollinearly and when 

phase matching conditions are satisfied, equation (4.4) is simplified to (eq. 4.5).  

 

[\]^_ W C`~2G^_`G^_ W C`         (4.5) 

 

The iris positioned after the doubling crystal blocks the two initial replica beams, 

and the middle second harmonic beam is sent to a detector which converts the second 

harmonic to an electrical signal, squares the incident field and integrates over the 

duration of the pulse, t. Now, the amplitude of the photo detector signal IAC is 

proportional to (Eq. 4.6) that can be written as (Eq. 4.7) due to the fact that square of 
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the electric field amplitude is intensity. This is the intensity of autocorrelation of the 

laser pulse proportional to two replicas.  

[Ne^C`~fb2G^_`G^_ W C`d� g_      (4.6), 

IAC-The intensity of autocorrelation  

[Ne^C`~f [^_`[^_ W C` g_      (4.7) 

 

Eq. 4.7 is called a correlation integral. It shows that the autocorrelation is not 

measuring the pulse but a correlation function of pulses of the two replicas. If two 

pulses are identical Eq. 4.7 can be easily solved analytically by multiplying the 

autocorrelation signal width by a constant factor that depends on the shape of the 

pulse [9]. For example, for Gaussian pulse the constant (Δt/Δτ) is 0.7071 for hyperbolic 

sech2 is 0.6482 and Lorentzian is 0.5 see table 4.1 [10-11]. Time-bandwidth product 

(Δt*Δν) is 0.4413 and 0.2206 for Gaussian and Lorentzian pulse shapes respectively. 

Autocorrelation function IAC for optical signals with different intensity profiles is 

depicted in Fig. 4.2.  

  

Fig. 4.2 Autocorrelation functions without (top) and without (bottom) background 

for various optical inputs [12]. 

Background-free IAC 

IAC 
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Table 4.1 Second-order autocorrelation functions and bandwidth products for 

Gaussian, Hyperbolic Secant squared and Lorentzian pulse shapes. TBWP- Time-

bandwidth product. 

Pulse 

Shape 

IAC(τ)= I(t) Δt/Δτ Pulsewidth 

FWHM)Δt 

TBWP 

ΔtΔν 

Gaussian Exp[-ln(2)*(2τ/Δτ)2] Exp[-ln(2)*(2t/Δt)2] 0.7071 1.665 0.4413 

Hyperbolic 

sech2 

3[(cτ/Δτ)*coth(cτ/Δτ)-

1]/[sinh2(cτ/Δτ)],c=2.71 

sech2(1.7625t/Δt) 0.6482 1.763 0.3148 

Lorentzian 1/(1+(2τ/Δτ)2 1/(1+(2t/Δt)2) 0.5 2 0.2206 

 

Thus by analyzing the shape of the autocorrelation function it can be concluded 

whether it is noise or optical pulse. As the information of the phase of the pulse is 

absent, there is some degree of uncertainty in fitting a pulse shape to the 

autocorrelation trace. Using this technique, it is very difficult to detect weak 

background noise that may associate with an optical pulse as well [9, 13]. But overall, 

the intensity autocorrelation technique is a very effective and cost efficient solution for 

estimation of optical pulses less than 100 ps. 
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4.1.2 RF spectra (good stable ML). 

According to Fourier theory, any time-domain electrical phenomenon is made up of 

one or more sine waves of appropriate frequency, amplitude, and phase [14]. In other 

words, a time-domain signal can be transformed into its frequency domain equivalent 

as shown in Fig. 4.3. A spectrum is a collection of sine waves, producing complex signal 

which can be represented in time domain or frequency domain forms.  

 

Fig. 4.3 Relationship between time and frequency domain [15]. 

 

On one hand, the time domain is very useful for measuring pulse rise and fall times, 

overshoot, and ringing. On the other hand, the frequency domain is more useful in 

determining the harmonic content of a signal, out-of-band and spurious emission and 

electromagnetic interference (unwanted emissions). So the repetition rate of the pulse 

can be accurately obtained by frequency domain measurements. An electrical 

spectrum analyzer, after converting the optical signal into an RF signal by a photodiode 

with a suitable bandwidth, is used for this purpose. It can be concluded from the RF 

signal-to-noise ratio of the fundamental and harmonics, as well as the -3dB bandwidth 

whether mode-locking is stable or not. For instance, the quality of pulse frequency 
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oscillation depends on the pedestal of the RF signal. If it’s broadened then the jitter is 

higher and there is some noise around the carrier.  Mode locking was considered to be 

stable when the pedestal was narrow and the signal-to-noise ratio was 15dB or more. 

Thus the RF spectrum can provide information not only about the repetition rate of 

the pulse but also about the stability of mode-locking.  
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4.1.3 Optical spectra characteristics. 

An optical spectrum analyzer gives us information about the central emission 

wavelength(s) and full width half maximum (FWHM) of the optical spectrum. It is used 

for calculating the time-bandwidth product (Eq. 4.8). 

 

Δν*Δτ=c*Δλ* Δτ/λ2              (4.8), 

where c-speed of light, λ-wavelength, Δλ- FWHM of optical spectrum and Δτ- pulse width.   

 

Ultrashort laser pulses carry significant bandwidth as a result of the time-bandwidth 

relationship. The pulse is said to be at its transform limit if the spectral components 

that fall under the bandwidth of the laser pulse are time coincident (Fig. 4.4 a). The 

phase of the several frequencies that make up the pulse can be different in time due to 

material properties (dispersion) (Fig. 4.4 b). As a result of this effect, called “chirp”, the 

pulse is broadened [16]. Thus the time-bandwidth product estimates whether 

measured optical pulses are transform-limited or chirped pulses. As can be seen in 

Table 4.1 transform-limited pulses for Gaussian pulse shape have TBWP of 0.4413 

which is higher than TBWP of 0.2206 for Lorentzian pulse shape. 



81 
 

  

Fig. 4.4 The temporal relationship between selected Fourier components of a) a transform-

limited pulse, b) a positively chirped pulse [16]. 
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4.1.4 Power characteristics (duty cycle, FOM). 

It is quite important to understand the difference and relation between average 

power and peak power. The energy content of the pulse is equal to the peak power of 

the pulse multiplied by the pulse width. However, power meters measure the power 

over a period of time that is longer than the pulse width – they measure the so-called 

average power.  The ratio of the pulse width (ΔτP) and pulse period (T) is called the 

duty cycle of a system (Fig. 4.5). Duty cycle is the fraction of time that a system is in an 

“active” state. In particular, duty cycle is the proportion of time during which a 

component, device, or system is operated. Peak power is calculated knowing the 

average power, repetition rate of the pulse and the pulse width (Eq. 4.9).  

PPEAK=PAVR*T/ ΔτP       (4.9), 

Where PPEAK- Peak Power, PAVR-Average Power, T- Pulse period, ΔτP -Pulse width. 

High average power in the laser is not always desirable as in the case of micro-

machining and photo-ablation due to thermal damage to the surrounding areas of 

processing. As shown in Fig. 4.5 the peak power of the pulse can be high while the 

average power is low. 

It is also important to remember that equation 4.9 can be used for defining of the 

peak power of the laser when the amplified spontaneous emission is negligible. In 

general, spontaneous emission should be subtracted from average power for correct 

pulse energy estimation.  
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Fig. 4.5 The relation between peak power (PPEAK), average power (PAVR), pulse width (τ) and 

period (T). 

 

In this context, as explained in chapter 1 the Figure of merit (FOM) can be used for 

estimating whether the laser produces enough energy for applying it in multi-photon 

imaging (FOM=PAVR*PPEAK ). 
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4.2 Experimental setup. 

The experimental setup shown in Fig. 4.6 was used in all experiments with a slight 

modification for the external cavity configuration, where an output coupler is added. 

During the measurement of the tapered lasers, several cylindrical lenses were also 

used to collimate the beam due to astigmatism.  

 

 

Fig. 4.6 The schematic of the experimental setup: QD -TS: quantum dot - two section diode 

on the XYZ mount, A- absorber, TC: temperature controller, PS: power supply, L, PM- Power 

meter, OI: optical isolator, HWP: half wave plate, F: fibre, FS: fibre splitter, PD: photo diode, 

RFSA: RF spectrum analyzer, AUT: autocorrelator, OSC: oscilloscope, OS: optical spectrometer, 

PC-personal computer. 

The laser is mounted on the Peltier cooler in order to maintain a constant 

temperature. Multi-section diode lasers are electrically pumped devices which consist 

of a gain section and an absorber section.  The former one is forward bias while the 

latter one is reverse bias using a Thurlby PL 320 (30V-2A) power supply. Aspheric 

lenses are used for collimating/focussing the light to the testing equipment. An optical 

isolator protects the laser from feedback and a half wave plate helps to achieve the 

correct polarization. A fibre optical coupler splits the beam into three different outputs 
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and enables monitoring of different parameters of the laser at the same time. A power 

meter helps determine the output average power, an autocorrelator with oscilloscope 

allows the measurement of ultrashort pulses, an RF spectrum analyzer combined with 

a fast photo diode shows the operating frequency and the quality of mode-locking and 

an optical spectrum displays the central emission wavelength(s).  

All straight waveguide lasers were fabricated by Innolume GmbH, Germany while 

the tapered lasers were fabricated by III-V Lab, France on the wafer provided by 

Innolume GmbH, Germany. As soon as the devices were tested and characterized the 

feedback of the performance with comments on possible way of optimisation the 

devices was given to Innolume and III-V Lab. In addition, some simulations were 

performed by the Politecnico di Torino, Italy as well as the University of Athens. Not all 

the devices worked very well. For example, it was found that 8 mm long 5, 10 and 15 

QD layers with 900 µm absorber didn’t mode-locked due to high an absorber-to-gain 

ratio as will be explained in section 5.4. 
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4.2.1 Peltier cooler. 

The investigated semiconductor lasers were mounted p-side up on the mount with 

the Peltier cooler connected to the temperature controller/Power Supply (TC/PS) 

Model SE 5010 Marlow industries. TC/PS is designed for the precision temperature 

control (between -99.9⁰C to 150⁰C) of all types of thermoelectric cooling devices.  With 

an adjustable DC output power of 192 Watts, the TC/PS can be used for a variety of 

applications, including: temperature control of laser diodes, infrared detectors, CCDs 

and thermoelectric heat exchangers. Thermoelectric cooling is based on the Peltier 

effect (discovered by Jean-Charles Peltier), or the effect of generating heat at an 

electrified junction between two different metals. A Peltier cooler, heater, or 

thermoelectric heat pump is a solid-state active heat pump which transfers heat from 

one side of the device to the other side against the temperature gradient (from cold to 

hot), with the consumption of electrical energy. When direct current runs through the 

Peltier device, heat is moved from one side to the other. Therefore it can be used 

either for heating or for cooling, although in practice the main application is cooling. 

The mount was covered with a thin layer of heat sink compound for better heat 

transfer from the laser. 
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4.2.2 Optical isolator and half plate. 

Faraday optical isolators are composed of three elements: entrance and exit 

polarizers and Faraday rotator (Fig. 4.7) [17]. The rotator consists of a strong 

permanent magnet containing a Terbium Gallium Garnet (TGG) crystal. The magnetic 

field and the length of the crystal are adjusted so that the input light’s polarization 

rotates by 45⁰ on exiting the crystal. In the reverse direction, the Faraday rotator 

continues to rotate the light’s polarization in the same direction that it did in the 

forward direction so that the polarization of the light is now rotated 90⁰ with respect 

to the input signal. So the light travels in only one direction and it helps to protect the 

laser from optical elements’ feedback which causes instabilities in the operation of the 

laser. A custom designed optical isolator was used in the experiments with the 

following parameters: IO-4-1180 nm/1260 nm -VLP, Aperture: 4.0mm, Isolation @ 

1180 & 1260nm: 23dB, Isolation @ 1220nm: 35dB, Transmission @ 1180nm: 88%, 

Transmission @ 1260nm: 88-91% (OFR-Thorlab). 

 

Fig. 4.7 Schematic of the Faraday isolator [17]. 
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A mounted Achromatic Half-Wave Plate, 1100 - 2000 nm AHWP05M-1600 Thorlab 

is used in the experiment. Half wave plate is used for rotating the plane of plane 

polarized light as shown in Fig. 4.8 [18].  

 

 

Fig. 4.8 The effect of half-wave plate on light polarization [18]. 

 

It is very important for autocorrelator that the polarization has to be in the right 

direction in order to generate any second harmonic signal. 
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4.2.3 Aspheric lenses. 

The compact aspheric Lenses (Model 5722-HC New Focus) with a broadband 

antireflection coating (1000-1600 nm) made of Corning C0550 glass provide a 

convenient, high-quality alternative to microscope objectives. Aspheric lenses are very 

good for refracting the light at large angles as they don’t introduce any significant 

spherical aberration compared to conventional spherical lenses. This allows a single 

aspheric lens to perform the same function as a compound lens system. They are 

useful for coupling light into and out of optical fibers or collimating diode lasers 

because the aspheric surface minimizes the aberrations experienced by rays travelling 

through the outer circumference of the lens. Each asphere is made from laser-quality 

glass to provide optimum performance and has extremely low wavefront distortion 

over a wide wavelength range. Each lens is mounted in a threaded lens holder marked 

with the focal length and equivalent microscope-objective power. In order to choose 

the best lens for the experiment its focal length can be estimated by using this formula 

(Eq. 4.10): 

 

                                          f=dDπ/4λ          (4.10), 

where f is the lens focal length, d is the beam diameter at the focus, D is the 1/e2 diameter 

of the collimated beam, and λ is the wavelength. 

 

The main parameters of the plano-convex aspherical lenses used in the experiments 

are: diameter of 6.3mm with focal length of 4.51 mm (tolerance +-1%), working 

distance 2.91 mm, housing dimension 10.6 mm, clear aperture 4.96 mm, and 

numerical aperture (NA) 0.55. The aspheres are less lossy, less bulky, and have fewer 

components. It is also important while collimating the beam to make sure the NA of 



90 
 

the lens is larger than that of the fibre or diode so that all the available light is 

captured. On the other hand, when focusing into a fibre, it is crucial that the NA of the 

focused beam is smaller than the NA of the fibre to maximize coupling efficiency 

(Fig.4.9).  

 

Fig.4.9 Ray trace for collimating and focusing using aspheric lens. 
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 4.2.4 Fibre splitter. 

A single mode optical coupler designed for 1310/1550nm wavelengths splits the 

input light into a 40/40/20 ratio with a fibre diameter of 900µm (Fig. 4.10). All legs 

were terminated with FC/APC (ferrule connector/angled physical contact) connectors 

to provide non-optical disconnect performance (Fig. 4.11). The fibre endface is 

polished at 8⁰ degree angle to prevent reflected light from interface travelling back up 

the fibre core, but instead leaks out into the cladding.  

 

  

Fig. 4.10 Fibre coupler 1x3 40/40/20 split designed for 1310/1550nm.  

 

 

Fig. 4.11 FC/APC (ferrule connector/angled physical contact) connector. 
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4.2.5 Autocorrelator. 

In all experiments, a Femtochrome FR103XL/IR autocorrelator was used operating 

in the wavelength range λ=700 nm -1800 nm with a LiIO3 crystal (1 mm/24⁰) and 

fundamental filter λ=1100-1300nm inside. This high resolution instrument was 

designed for continuous monitoring and display of femtosecond and picosecond laser 

pulses. The autocorrelator provides a dispersion free scan range of 200 ps with high 

linearity. High reflecting metallic coated mirrors are used for eliminating the 

dispersion. The focus in the nonlinear crystal is obtained by means of a curved mirror 

M2 (Fig. 4.1).  The standard FR-103XL is based on background-free (noncollinear) 

second harmonic generation and measures the autocorrelation function of repetitive 

ultrashort laser pulses as explained in section 4.1.1. Repetitive linear delay generation 

in one arm of the Michelson arrangement is introduced by a pair of parallel mirrors 

centred about a rotating axis (Fig. 4.12). The rotating parallel mirrors changes the 

optical path of the beam. This way the transmitted pulse train is delayed (or advanced) 

about the reference (zero delay) position. For small angular changes, the delay as a 

function of time is linear (Eq. 4.11) [19]. 

	T = iπklm
n t                    (4.11), 

where T is delay, DM is the distance between parallel mirrors, f is the frequency of 

rotation, c is the speed of light. 
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Fig. 4.12 Rotating parallel mirrors in the autocorrelator setup. DM- the distance between 

parallel mirrors M1 and M2, f- the frequency of rotation, dL-the length of the scanning mirror. 

 

Thus the rotating mirrors provide repetitive generation of linear delay which is used 

for SHG and for a continuous display of the autocorrelation function of the pulses on 

an oscilloscope synchronized to this rotation. In the experiments, a Textronix TDS 

2022B two channel digital storage oscilloscope 200MHz, 2GS/s was used.  The total 

scan range is given by Eq.4.12. 

pK = √�YF
?            (4.12),   

where Tt-total scan range, dL-the length of the scanning mirror, c –speed of light. 

 

A figure of nonlinearity over the full scan range is Eq. 4.13. 

NL �
st
ilm

        (4.13), 

where NL- figure of nonlinearity, dL-the length of the mirror, DM-the distance between the 

parallel mirrors. 

The delay range of the autocorrelator is proportional to the mirror size used. For 

long pulse widths, the effect of scan nonlinearity needs to be taken into account.  
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The scan mirror has a size of d=1.7’’ and the distance between the mirrors D=3’’, 

the rotating frequency is f=10 Hz. This means from the Eq. (4.11)-(4.13): 

T/t=31 ps/ms; 

Tt=200 ps; 

NL=7%/100 ps 

The T/t value is an important delay calibration factor. Once the autocorrelation is 

obtained the full width half maximum of the trace is multiplied by calibration factor 

and by factor associated with pulse shape (discussed in 4.1.1) in order to get the true 

value of the pulse width. In other words, the calibration factor suggests that a 31 ps 

pulse autocorrelation width would produce a 1 ms FWHM trace when viewed on an 

oscilloscope. Resolution is limited only by the SHG crystal thickness, which is typically 

0.3 mm, giving a resolution of ~15 fs. Using a thinner (<0.05 mm) crystal, a resolution 

of <5 fs can be achieved. Figure of nonlinearity (NL) shows that for a pulsewidth as long 

as 100 ps, the pulsewidth measurement error due to scan nonlinearity is 7%. The 

sensitivity of the autocorrelator depends on the operation wavelength and the 

characteristics of the nonlinear crystal, an average input power (Pav) of a few mW is 

typically sufficient. Thus minimum detectable signal level can be as low as Ppeak*Pav= 

(mW)2, where Ppeak is the peak power. 

The precision of pulse width measurements is a bit difficult to estimate precisely. 

The "hardware" precision is related with the spatial calibration of the autocorrelator, 

but the major source of error will come from the fact that to estimate pulse duration, 

one has to fit a certain pulse shape to the autocorrelation function, which may not 

necessarily be the "actual" pulse shape. We could only "see" the actual pulse shape if a 

completely different type of autocorrelation is used, such as FROG. Roughly, there is a 

10% error for both pulse duration and peak power.  
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4.2.6 RF spectrum analyzer and fast photodiode. 

Rohde and Schwarz RSP Spectrum analyzer FSP-40 used in the experiment is based 

on a narrow band receiver for measuring high frequency signals (Fig.4.13) [15]. The 

frequency of a receiver is swept repetitively over the desired range of frequencies. The 

input signal passes through an attenuator, then through a low-pass filter, where high 

frequency signals are blocked, to a mixer, where it mixes with a signal from a local 

oscillator. The outputs of the non-linear mixer include not just two original signals but 

also their harmonics and the sums and differences of the original frequencies and their 

harmonics. Only those signals are processed further to a logarithmitic amplifier which 

fall within the passband of the intermediate-frequency (IF) filter. The bandwidth of the 

IF filter defines the frequency difference resolution called the resolution bandwidth 

(RB). For higher resolution, a narrower bandwidth is required but the sweep rate is 

decreased (or sweep time is increased) as the response time of IF filter becomes 

slower. 

 

 

Fig. 4.13 Block diagram of a spectrum analyzer [15]. 
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The envelope detector converts the signal voltage from the IF into power 

measurements (video signals). Following the power detector there is a low pass 

smoothing filter for providing a “clean” display of amplitude. The bandwidth of this 

filter is called video bandwidth (VB). If a narrow video bandwidth is chosen the sweep 

rate reduces as in the case of the IF filter. The ratio RB/VB determines the “noisiness” 

of the displayed signals. A ramp/sweep generator creates the horizontal movement 

across the display from left to right at the same time tunes the local oscillator so that 

its frequency change is in proportion to the ramp voltage. The horizontal axis of the 

display is linearly calibrated in frequency that increases from left to right. Setting the 

frequency consists of a two-step process. First the central frequency is adjusted with 

the central frequency control, then the frequency range (span) across the mapped 

display. The vertical axis is calibrated in amplitude. Logarithmic scale is used more 

often than the linear scale as it has a much wider dynamic range display. The top of the 

screen (reference level) displays the maximum power with the current settings and is 

usually measured in dBm. Power is converted from dBm to mW using Eq. 4.14. 

 

X^dBm` = 10log<} ~^��`                                                        (4.14), 

 

 This means that 0 dBm corresponds to 1 mW power and 3 dBm difference 

corresponds to half reduction of the power. The frequency range of the spectrum 

analyzer is from 9 kHz (20 Hz) to 40 GHz. The speed of the RF analyzer is 2.5 ms sweep 

time in the frequency domain and 1 µs in the time domain. The accuracy is 0.5 dB total 

level uncertainty up to 3.6 GHz and <0.2 dB linearity error down to -70 dB.  

In order to convert the optical signal into an electrical RF signal, a fast 29 GHz 

photodiode (model D-15 Newport) was used. The photodetector element is an 
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interdigitated metal-semiconductor-metal (MSM) structure fabricated on an InGaAs 

semiconductor structure. Light absorbed between the MSM fingers generates 

electron-hole pairs that are swept through the active region to their respective 

electrodes in picoseconds. 
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4.2.7 Optical spectrometer. 

The laser spectrometer WaveScan  APE (Angevandte Physik und Elektronik GmbH) 

RS232 version was designed for measuring the spectrum of continuous wave or high 

pulse repetition rate (> 4MHz) laser systems. This spectrometer is equipped with an 

FC/PC type connector for fibre input and consists of the spectrometer optics with a 

power adaptor. The optics unit is controlled by a personal computer (PC) via the RS232 

serial port using the control software LasScan. This software manages the data transfer 

between the spectrometer and the PC and allows quasi real-time graphical monitoring 

of the spectra as well as data storage and processing. The wavelength range is from 

800 nm to 1600 nm, bandpass < 0.2 nm, wavelength accuracy �0.2 nm and measuring 

rate of approximately 6 spectra per second. The WaveScan is a grating spectrometer in 

the Littrow configuration with a focal length of 200 mm (Fig. 4.14) [20]. The diffraction 

grating rotates with a rate of about 6 rounds per second and separates the several 

spectral components of the spectrum from the incident beam. The Si photodiode 

measures the intensity of the light in various regions of the spectrum every round trip.  

 

 

 

Fig. 4.14 Schematic of grating spectrometer. 
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At a distinct angular position of the grating a high precision trigger starts the 

measurement. Following that a fixed number of data points (exactly 32768) are taken 

with a sampling rate of about 1.3 MHz. A subset of these data is transferred to the 

control PC on request. 
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4.2.8 Power meter. 

A power meter of model 2936C Newport was used for measuring average power 

with high power thermopile detector 818P-001-12 (with IRF1 filter). Thermopile 

detectors have become a popular choice for power measurements primarily due to the 

higher power measurement capability as well as the broadband nature of the 

detectors. The responsivity values for thermopiles are relatively flat across the 

operating wavelength range of the detector which makes it ideal for broadband 

applications such as solar measurements [21]. This detector can measure between 1 

µW and 1 W of average power. The effective aperture diameter was 12 mm, 

wavelength range from 280 nm to 1.36 µm, power noise level of � 0.5 µW, typical 

sensitivity of 180 mV/W, calibration uncertainty of �2.5 % and power resolution of 

�0.5 %. 
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4.3 Conclusion. 

In this chapter, characterisation techniques were presented in detail. The 

autocorrelation technique for pulse measurement as well as the relationship between 

time domain and frequency domain representation of a spectrum were explained. 

Optical spectra measurement gives information about the central emission wavelength 

as well as whether the pulse is chirped or transform-limited.  The experimental setup 

used for characterising the lasers was presented in Fig. 4.6. Optical elements such as 

an optical isolator, half plate, aspheric lenses, fibre splitter involved in the setup are 

explained. In addition, the basic parameters of the autocorrelator, RF spectrum 

analyzer, optical spectrometer and power meter are discussed. 
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Chapter 5. Different mode operations in monolithic quantum 

dot lasers. 

5.1 State of the art: multi-wavelength ultrashort pulse 

generation. 

The development of multi-wavelength ultrashort-pulse laser systems is required for 

a variety of applications such as time-domain spectroscopy, nonlinear optical 

frequency conversion, optic sensing and wavelength division multiplexing 

communication systems. Solid state based two-color mode-locked lasers systems have 

been very well developed using different materials such as Ti:Sapphire [1-2], Erbium-

doped fiber [3], and ceramic lasers [4]. For example, two perfectly synchronized pulse 

trains that are independently tunable over a 100 nm wavelength range and with pulse 

durations below 30 fs were demonstrated [1]. A passively mode-locked erbium-doped 

fibre ring laser also exhibited the possibility of dual-wavelength short pulse generation 

with a 43.4 nm wavelength tuning range [3]. Recently, a two-wavelength mode-locked 

Yb:YAG ceramic laser simultaneously generating 380 fs pulses at 1033 nm and 1047 nm 

was demonstrated [4]. As solid state laser systems are not cheap and bulky, new 

technologies that are based on diode lasers are developed due to compactness and 

low cost of these devices. A single quantum well mode-locked laser in an external 

cavity configuration generates picosecond pulses in the order of 100 ps and 70 ps 

involving different transition states GS or ES respectively [5]. Monolithic QD based 

mode-locked edge-emitting lasers have also shown a great potential as compact high 

power ultrashort pulse versatile optical sources [6-8] due to the quantum confinement 

of the carriers in all three dimensions which leads to the properties discussed in 
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section 2.3. The discrete energy levels displayed by QD materials can also be exploited 

to access distinct spectral bands in the same device, adding an extra level of 

functionality to these ultrafast lasers. For instance, it is possible to achieve two-state 

lasing using the ground state (GS) and excited state (ES) transitions in a QD laser [9]. 

Alternatively, femtosecond pulses were generated from a Cr4+: forsterite mode-locked 

laser incorporated within a cavity a QD-based semiconductor saturable absorber 

mirror (SESAM) involving not only GS but ES as well [10]. First, an optically gain 

switched quantum-dot edge-emitting laser generating picosecond pulses from GS and 

ES states was demonstrated [11]. In this context, stable mode-locked operation 

involving either GS or ES in a two-section QD laser diode was shown for the first time, 

by controlling the injection current and reverse bias to force laser emission to switch 

from the GS to the ES transition [12-13]. Self-pulsation regimes in two-state QD laser 

operating simultaneously on the GS and ES were reported [14-15].  Furthermore, 

reverse GS/ES transitions were observed by Breuer et.al [16-18]. Such versatility of the 

QD mode-locked diode laser could enable its use as a two-band clock recovery source 

[19-20]. Moreover, dual-GS-wavelength mode-locking or continuous wave operation 

was reported by a number of groups, and variously attributed to Rabi-oscillations, AC-

Stark effect, state filling effect, spectral hole burning or homogeneous and 

inhomogeneous broadenings, as the physical mechanism of operation is not yet fully 

understood [21-24] (more details in section 6.1.2). In addition, by changing structural 

parameters (the cavity length and number of QDs in the active region) of the laser GS 

or ES emission can be achieved [9, 25]. In this context, compact cheap electrically 

pumped QD-based mode-locked lasers are very promising candidates as versatile next 

generation optical sources which can be successfully applied to time-domain 

spectroscopy, wavelength-division multiplexing and ultrafast optical processing. 
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In section 5.2, the investigation of the influence of bias conditions on the pulse 

characteristics generated via ES in a two-section InAs/GaAs QD laser is presented [26]. 

In section 5.3, a dual-wavelength mode-locking regime is demonstrated, involving both 

the ground and excited-state transitions with a spectral separation of 83nm [27], 

which is the widest spectral separation ever to be observed in a non-vibronic dual-

wavelength mode-locked laser. In section 5.4 the influence of the cavity length and 

number of QD layers in the device on pulse duration, and peak power along with 

achieving ES emission is outlined. 
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5.2 Ultrashort pulse generation via ground and/or excited 

states.  

5.2.1 Introduction. 

A thorough investigation of the dependence of the pulses generated via ES 

transition on the driving conditions has not been performed before. Indeed, the bias 

conditions for obtaining mode locking via only the ES transition were narrow and the 

transition between regimes displayed hysteresis [12-13], which inhibited a systematic 

characterization of the mode-locking regime involving solely ES.  The understanding of  

bias factors influencing the pulse duration is important in order to establish the 

optimal bias condition rules for ultrashort pulse generation as the ES shows significant 

tolerance to optical feedback, compared to the GS mode-locking regime [28]. This is of 

importance for applications, as the use of an optical isolator can be avoided. The 

numerical analysis of the frequency chirp showed that a QD laser emitting from the GS 

gives a chirp considerably higher than from the ES, due to a large refractive index 

variation at the GS lasing wavelength caused by the accumulated carriers in the ES 

[29].  Moreover, the use of the ES transition can effectively extend the spectral range 

of laser emission towards shorter wavelengths.  
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5.2.2 Device structures. 

A two-section QD laser diode was grown by molecular beam expitaxy on a GaAs 

substrate. The active region incorporated 5 layers of InAs QDs. The laser diode length 

was 2 mm, with an absorber section of 300 µm and the ridge width was 6 µm. The 

laser was tested at 20oC controlled by a Peltier cooler. The front and back facets of the 

laser diode were anti-reflection (~3%) /high-reflection (~95%) coated respectively.  The 

setup used in this experiment is almost the same as shown in Fig.4.6 and described in 

section 4.2. The only difference is related to power measurements of both GS and ES 

transitions which were performed with the grating as the light from GS and ES are 

reflected at different angles due to variance of refractive index between the bands. 

Initially the ratio of the powers of incident light to reflected light from the grating was 

obtained for each band when the other band is absent. Then at the regime of the 

simultaneous presence of both bands the power of the reflected light is measured of 

each band separately and recalculated using obtained ratios in order to achieve real 

values for the output powers. The pulse durations in both GS and ES spectral bands 

were measured by a non-collinear autocorrelator based on second-harmonic 

generation as explained in section 4.2.1. The spectral characteristics were measured by 

a spectrometer and mode-locking performance was further investigated with an RF 

spectrum analyzer in combination with a high-speed 29GHz photodiode.  Mode-locking 

was achieved in a two-section laser by applying forward current to the gain section and 

reverse bias to the absorber, which is closer to the back facet of the laser and acts as 

the discriminator of the cavity loss for ultrashort pulse generation as explained in 

chapter 2. 
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5.2.3 Experimental results and discussion. 

By varying the bias conditions, different mode-locking regimes were observed 

involving ground and excited states (Fig. 5.1). Ground state mode-locking (GSML) was 

observed at a wavelength λ=1250 nm and repetition rate of 20.1 GHz, while for 

excited-state mode-locking (ESML), λ=1177 nm and the repetition rate was 19.8 GHz. 

In order to better compare the dependence of the pulse duration and average power 

with increasing current between the GSML and ESML regimes, a fixed reverse bias of 

6.15 V was applied to the saturable absorber, which allowed the observation of three 

different mode-locked regimes, as depicted in Fig.5.1.  

 

Fig. 5.1 Map of the different Mode-locking regimes with bias conditions: GSML – Ground 

state mode-locking; GSML ESCW- Ground state mode-locking in coexistence with excited state 

continuous wave emission; ESML – Excited state mode-locking. 

 

The threshold current density under such reverse bias was 715 A/cm2. For a bias 

current of up to 200 mA, it was observed (Fig. 5.2 a) that the pulse duration of GSML 

increased with current, which is mostly due to the well-known effect resulting from 

the increase in self-phase modulation effects with optical power, which in combination 
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with the group velocity dispersion in the semiconductor laser leads to a pulse 

broadening with increasing current [30]. 

 

 

Fig. 5.2 Dependence on injected current of (a) pulse duration, (b) average output power for GS 

and ES mode-locking at 6.15 V reverse bias. GSML – Ground state mode-locking; GSML ESCW- 

Ground state mode-locking in coexistence with excited state continuous wave emission;    

ESML – Excited state mode-locking. 

 

Between 200 mA and 250 mA we also observed a particular regime of GSML, where 

the coexistence with ES (CW) has the effect of reducing the pulse duration with 

increasing current. A similar mode-locking regime has been investigated and reported 

[31].  By increasing the current further, only ESML is observed, due to the gain 

saturation across the GS transition and the higher saturated gain that characterizes the 

ES. As evidenced in Fig. 5.2 a, the pulse duration in the ESML regime varies between 7 

ps and 9 ps, thus exhibiting wider pulse durations than what was obtained for GSML (it 

is important to stress that ESML was only achieved at the expense of injecting high 

drive currents, which usually is associated with longer pulse durations). The 

corresponding average power was lower compared to that of the GS due to the 

increased non-saturated losses (Fig. 5.2 b). The output power changed between 15 

mW and 25 mW with increasing current. The dependence of the pulse duration and 
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average power were also investigated with a fixed injection current (300mA) applied to 

the gain section, while the reverse bias applied to the saturable absorber was 

increased, resulting in the observation of the GSML and ESML regimes in succession 

(Fig. 5.3). As expected, the pulse duration of GSML was observed to decrease from 

15.5 ps to 6 ps with reverse bias due to the fact that the absorption recovery becomes 

increasingly faster [8, 32-33]. Pulses are almost twice shorter compared to Kim.et.al. , 

where pulse duration changed from 25 ps to 14 ps with reverse bias [19]. For a higher 

value of reverse bias, the GSML regime is switched to an ESML regime, and whereby 

the duration of the pulses generated via ESML are in the range of 9.3 ps and 10.3 ps 

with increasing reverse bias up to 8 V while the average power continues to decrease 

with reverse bias as is also observed in the GSML regime.  It is interesting that in a 

previous report [19], the ESML was achieved at lower reverse bias between 0-2 V with 

the pulse decreasing from 18 ps to 10.8 ps. ES lasing was observed only at low reverse 

bias, but not at the higher reverse bias due to the higher gain saturation required 

across the GS transition as explained in section 2.3.3. From this investigation, it can be 

concluded that such device can be very promising for the generation of ultrashort 

pulses using compression techniques, not only in GS but in ES transitions as well. 

 

Fig. 5.3 Dependence on reverse bias of (a) pulse duration (b) average output power for GS and 

ES mode-locking at I=300mA current. Inset: average power of ES band with reverse bias; 

GSML– Ground state mode-locking; ESML – Excited state mode-locking. 
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The differences in pulse dynamics of GSML and ESML can be partially explained by 

the different intradot relaxation dynamics of the absorber for GS or ES transitions. As 

recently reported by Piwonski et al. [32], the absorption recovery via the GS is 

mediated mostly by phonon-assisted processes, while the ES absorption recovery is 

dominated by Auger-type processes. It was also shown [32] that the absorption 

recovery time reduced most significantly with increasing reverse bias for the GS, while 

the absorption recovery time for the ES was shown to be somewhat less sensitive to 

the reverse bias applied – and particularly so for higher values of reverse bias (5-9 V), 

which indeed encompasses the range of reverse bias values required to achieve stable 

pulse generation via ESML [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

5.2.4 Conclusion.  

The influence of the bias conditions (current and reverse bias) on the characteristics 

of the pulses generated via ESML in a monolithic two-section QD laser has been 

investigated. It is shown that the pulse duration of ESML does not exhibit as strong a 

dependence on the driving conditions as in the GSML regime, where the pulse 

duration is highly dependent on the applied gain current and absorber reverse bias. 

The reverse bias was not observed to produce a significant effect on the pulse 

duration, and as such it should be kept as low as possible in order to maximise the 

average power and consequently the peak power generated. 
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5.3 Dual-wavelength mode-locking via ground and excited 

states. 

5.3.1 Introduction/State of the art. 

In the previous section three different regimes of mode-locking: GSML or GSML 

with ESCW and ESML were demonstrated. Nevertheless, simultaneous generation of 

picosecond pulses from the GS and ES was not achieved so far from QD based mode-

locked lasers but only the pulses from one of the states, GS or ES, were observed by 

changing bias conditions (gain current and absorber reverse bias). In this section a 

simultaneous dual-wavelength passive mode-locking regime is presented from a QD 

two-section monolithic laser with picosecond pulses generated from both GS    

(λ=1263 nm) and ES (λ=1180 nm) transitions simultaneously with the widest spectral 

separation of 83 nm ever observed in a non-vibronic ultrafast laser [27], which is 

slightly lower than previous results from a solid-state based laser [1]. The experimental 

setup described in section 4.2 is used for characterization of 2 mm two-section QD-

based mode-locked devices. The structure of the device is the same as in the previous 

section (5.2.2) but emitting at a different wavelength as the result of formation of 

different size QDs during the growth process. 
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5.3.2 Experimental results and discussion.  

The regime of simultaneous mode-locking in GS and ES was attained for current 

levels in the gain section between 330 and 430mA, and values of reverse bias between 

6 and 10V in the saturable absorber section. A map depicting the different mode-

locking regimes is represented in Fig. 5.4. It is interesting that ESML was observed both 

before and after the dual-wavelength mode-locking regime which can be attributed to 

interplay between the modes due to nonlinear absorption. 

As can be seen from the table 5.1 the central emission wavelengths were ~1180 nm 

and ~1263 nm for ES and GS, respectively. The pulses during the simultaneous dual-

wavelength mode-locking regime can be as short as 5.9 ps and 7 ps for GS and ES 

respectively depending on bias conditions. As an example, optical and RF spectra for a 

current of 425 mA applied to the gain section and a reverse bias of 6V applied to the 

absorber section are presented (Fig. 5.5 a) resulting in the spectral separation between 

GS and ES of 83 nm. As refractive index varies with wavelength, the pulse repetition 

rates for ES and GS were 0.5 GHz different, which were 19.6 GHz and 20.1 GHz 

respectively (Fig. 5.5 b). The autocorrelation traces obtained for the ES and GS were 

fitted using a Gaussian function and resulted in pulse durations of 5.9 ps for the GS and 

8.6 ps for the ES bands, obtained for a reverse bias of 6 V and an injection current of 

425 mA. Knowing the pulse duration, central emission wavelength and full width half 

maximum of optical spectra, the time-bandwidth product (TBWP) was estimated for 

the GS as 6.7 and for the ES as 9. 
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Fig. 5.4 (a)Mapping of the different operating regimes observed in 2 mm QD mode-locked 

laser. (b) Mapping of the dual-wavelength mode-locking regime here described (GSML+ESML). 

Legend: GSML– ground-state mode-locking; ESML– excited-state mode-locking; GSCW-ground-

state continuous wave operation. 

 

These pulse durations and TBWPs are similar to those previously observed in 

separate GS/ES mode-locking [13, 19]. The average power measured for the GS was 

21.3 mW and for ES 32.1 mW, resulting in peak powers of 261 mW and 128 mW 

respectively (see table 5.1). 

  
 

Fig. 5.5 (a) Optical spectrum and (b) RF spectrum characteristic of the dual-wavelength mode-

locked regime, for an injection current of 425 mA and reverse bias of 6 V.  
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The difference in RF spectrum between GS and ES of 10 dB (shown in fig. 5.5b) is 

attributed to the different level of average power and pulse durations. As the pulse 

duration becomes broader according to the Fourier analysis, the amplitude of the 

Fourier transform of a Gaussian pulse train becomes higher. 

 

  
 

Fig. 5.6 Autocorrelation traces for (a) GS mode-locking and (b) ES mode-locking at 6 V reverse 

bias and 425 mA gain current. 

 

The power ratio and pulse duration ratio of ES/GS for this bias condition                   

(6 V, 425 mA) are 1.5 and 1.46 respectively. As a result, the amplitude of the Fourier 

transform for the ES will be 2.2 times higher (3.5 dB difference) than for the GS. 

Fourier transform amplitude is a double of amplitude in the electrical power spectrum. 

In other words, the RF peak for ES will be higher than for GS in the range of 7 dB. The 

remaining difference between the experimental observation of 10 dB and the above 

calculated 7 dB is attributed to the experimental conditions: variation in the average 

power, the RF spectrum settings and frequency response (flatness). The dual-

wavelength regime of operation from a QD-based mode-locked two-section laser was 

proved by the numerical model based on the delay differential equation 

approximation [34] taking into account the dynamics of the quantum dot material [35] 
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and described in detail ref. [27]. Dual-wavelength emission is possible for reverse 

biases higher than 6 V due to the decrease of the absorber recovery time assisted by 

the tunnelling carrier escape mechanism [33]. 

 

Table 5.1 Bias conditions: reverse voltage to the absorber (V) and forward current to the gain 

section (I); pulse duration (τ), Average power (Pav), Peak Power (Ppeak), Time bandwidth 

product (TBWP), full width half maximum of optical spectra (Δλ ), central wavelength (λ ), GS –

ground state (black) or ES-excited state (red) of dual-mode regime in QD-based mode-locked 

laser. 

 

V   
(V) 

I 
(mA) 

τ 
(ps) Pav (mW) Ppeak (mW) TBWP Δλ (nm) λ (nm) State 

6 425 5.9 32.1 261.6 6.7 6.0 1263.40 GS 

6 430 7.1 35.5 249.7 9.5 7.1 1263.74 GS 

6.7 400 5.9 17.1 144.1 7.0 6.2 1263.03 GS 

7 394 6.6 11.8 89.9 7.6 6.2 1263.38 GS 

8 375 9.3 12.1 65.2 8.0 4.6 1263.52 GS 

8 390 7.1 12.5 87.9 6.9 5.2 1265.00 GS 

9.2 380 7.3 10.5 71.6 7.3 5.3 1264.18 GS 

9.3 344 9.4 8.3 44.0 8.4 4.7 1263.28 GS 

6 425 8.6 21.4 128.4 9.0 4.9 1180.55 ES 

6 430 8.8 11.8 67.6 9.8 5.2 1180.70 ES 

6.7 400 7.9 21.7 136.7 8.2 4.8 1180.16 ES 

7 394 8.7 24.5 140.9 9.0 4.8 1179.87 ES 

8 375 8.5 29.2 171.9 8.1 4.4 1179.07 ES 

8 390 8.6 33.7 196.6 8.4 4.5 1179.07 ES 

9.2 380 8.6 11.6 67.0 8.0 4.3 1179.14 ES 

9.3 344 7.0 34.8 250.2 6.7 4.5 1178.49 ES 

 

The relatively narrow region of dual-wavelength regime is connected with the 

dynamics between the two states (GS, ES) which gives rise to instabilities due to the 

carrier intraband capture and escape processes between states. As a continuation of 

the presented results, stable two-state mode-locking was recently achieved from a 
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two-section mode-locked laser incorporating two repeats of three chirped QD layers   

[16-17]. It is interesting that reverse-emission-state-transition was observed where 

mode-locking starts at the ES emission as 0 V reverse bias was applied. Dual-state 

mode-locking was achieved at lower gain current between 130 mA- 170 mA compared 

to the above results (330 mA- 430 mA) because loss in the absorber is increased with 

voltage applied. The higher absorber-to-gain ratio 1:10, compared to 1:7, leads to the 

different the gain and absorber dynamics in the gain and the saturable absorber. The 

effect of the fast relaxation of ES carriers in the GS, so-called photon pumping or 

photon recycling process, results in the reduction of the absorption at the GS 

wavelength at the saturable absorber allowing the coexistence of GS and ES mode-

locking [16-17].  
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5.3.3 Conclusion.  

A dual-wavelength passive mode-locking regime of operation was investigated and 

presented for the first time where picosecond pulses are generated from both GS 

(λ=1263 nm) and ES (λ=1180 nm) in a two-section GaAs-based QD laser. Measured 

optical spectra showed a spectral separation of 83 nm which is the widest ever 

observed in a dual-wavelength mode-locked non-vibronic laser. 
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5.4 Influence of the cavity length and number of QD layers on 

ultrashort pulse generation. 

5.4.1 Introduction. 

The importance of a reliable saturable absorber for short pulse generation in 

passively mode-locked lasers was understood more than 20 years ago [36]. It was 

found that in multi-section monolithic devices pulse width and peak power show 

better results for mode-locked lasers with a longer passive section [37]. Sub-

picosecond pulses (796 fs) were generated in a 20 GHz passive mode-locked quantum-

dot laser diode incorporating 5 layers of QD in the active region with an absorber-to-

gain ratio of 1:4 [38]. The ratio between the gain section and absorber plays a vital role 

in ultrashort pulse generation. As explained in [8] an absorber-to-gain ratio in QD 

lasers less than 1:3 is not desirable as there is not enough gain to overcome the losses 

in the absorber section, while an absorber-to-gain ratio more than 1:14 is not 

favourable for mode-locking due to insufficient saturable absorption. In this context, 

the influence of nonlinear absorption saturation and the Quantum Confined Stark 

effect in a QD laser on bias conditions were studied [39]. The understanding of 

ultrafast QD absorber dynamics gives further insight into pulse broadening/shortening 

mechanisms [40].The interrelation of the structural parameters (cavity length, number 

of QD layers) with optical characteristics (threshold current density, regime of 

operation GS/ES) of the laser working in continuous wave (cw) mode have been 

reported in the past [25, 41-43]. In this section, the dependence of pulse duration, 

average power, peak power on the number of QD layers incorporated in the two-

section QD based mode-locked laser is presented. In addition, the interplay between 

GS and ES regimes of operation for a 1.3 mm cavity length is demonstrated.  
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5.4.2 Device structures. 

The experimental setup described in section 4.2 is used for characterization of the 

two-section QD-based mode-locked lasers.  

 Investigated lasers had 2 mm and 1.3 mm total cavity length with the absorber of 

300 µm resulting in the gain-to-absorber ratios of 1:6 and 1:4 respectively, which is 

very favourable for stable mode-locking as discussed above [8]. All lasers had a ridge 

waveguide width of 6 µm, the active region incorporated 5, 10 or 15 layers of QDs 

grown by the Stranski-Krastanow method as described in section 2.2. All lasers were 

maintained at 20⁰C by Peltier cooler.  
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5.4.3 Experimental results and discussion. 

Pulse duration dynamics with bias conditions for 2 mm devices with different 

number of QD layers (5, 10, 15) are presented in Fig. 5.7. Pulse duration changes from 

1ps to 10 ps depending on applied forward current and reverse bias to the absorber. 

Pulse broadening with increasing gain current for all devices is attributed to a self-

phase modulation effect [30].  The shortest pulse duration of 1 ps from a 10 QD layer 

laser was observed just above the lasing threshold with 6 V reverse bias and 122 mA 

forward current. The central emission wavelength for such bias conditions was around 

1253 nm with a full-width half-maximum of 3.67 nm resulting in a TBWP of 0.7, which 

indicates that the pulse is not transform limited. The exponential decrease of pulse 

duration was observed for all devices and explained by exponential dependence of the 

absorber recovery time on the applied reverse bias [44-45]. The range of mode-locking 

for a 5 QD layer laser is between 4 V and 9 V with current range from 140 mA to       

400 mA (Fig. 5.7 a). As the number of QD layers is increased to 10, the range of mode-

locking is broadened and shorter pulses can be generated (Fig. 5.7 b). A 15 QD layer 

laser showed the widest range of mode-locking from 2 V to 10 V and driving current 

from 160 mA to 500 mA. The threshold current is higher for this laser as more gain is 

required to overcome optical losses. In Fig. 5.8 peak power dynamics are shown. The 

variation of peak power with reverse bias does not exhibit a clear trend as the increase 

in average power is somewhat compensated by the pulse broadening. The highest 

peak power of about 600 mW is achieved for the low current region of a 10 QD layer 

laser due to a higher average power than for the 5 QD layer laser and shorter pulse 

generation. As can be seen in Fig. 5.8 b) and c) peak power with increased number of 
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layers doesn’t change much as broadening of the pulse balances the increased average 

power. 

Furthermore, laser emission involving the ES transition was observed only for 5 

layer devices as the lower number of layers allowed for an early saturation of the GS 

and achievement of the ES laser emission. ES mode-locking was observed for a gain 

current higher than 300 mA and reverse bias higher than 6 V in the absorber for the     

2 mm long laser. In order to induce a transition from GS to ES emission, it is important 

to saturate the gain associated with the GS transition. This can be achieved by either 

increasing the forward current in the gain section, and/or by increasing the reverse 

bias in the saturable absorber, which leads to an increase of the GS non-saturated 

losses and consequently to an earlier saturation of the GS gain.  Another way of 

enabling an easier access to ES emission is by decreasing the length of the laser 

resulting in a lower GS gain which is unable to compensate the total loss in the cavity 

[9, 25]. As an example, it was shown that ES emission  from a 1.24 µm laser 

incorporating a single InAs quantum-dot layer appears for a laser cavity less than or 

equal to 1.5 mm [25]. In addition, a 3 QD layer-laser exhibited only ES lasing for a short 

cavity in the range of 1 mm to 2 mm long [9]. However, the higher the number QD 

layers the smaller the effect of gain saturation appears to be [46]. For example, a 10 

QD layer InGaAs laser provides enough gain for GS lasing in a broad-area 1 mm long 

stripe laser [47].  
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Fig. 5.7 Pulse width dynamics with bias conditions for 2 mm laser with (a) 5, (b) 10 and (c) 15 

QD layers. Number of measured points is ~ 1600. 
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Fig. 5.8 Peak Power dynamics with bias conditions for a 2 mm laser with (a) 5, (b) 10 and (c) 15 

QD layers. Number of measured points is ~ 1600. 

  In this context, a shorter device of 1.3 mm long with a 300 µm absorber and 5 QD 

layers in the active region was investigated. As the result, mode-locking from ES at 

~1188 nm with or without coexistence of CW emission from GS at ~1274 nm was 

observed as depicted in Fig. 5.9 a), b) for operating temperatures of 20 and 14 ⁰C 

respectively. 
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Fig.5.9 Mapping of mode-locking regimes observed for a 1.3mm long 5QD layers device, under 

an operating temperature of (a) 20⁰C and (b) 14⁰C.  GS/ES: ground-state/excited state. 

CW/ML: continuous-wave/mode-locked operation. 

 

ESML without the coexistence of GSCW was observed only for currents higher than 

400 mA at 20⁰C operating temperature of the laser (Fig. 5.9 a). As the operating 

temperature was lowered to 14 ⁰C a small region of GSML was noticed (Fig. 5.9 b) due 

to the fact that the GS intensity increases dramatically with decreasing temperature, 

but at the same time the ES intensity doesn’t change significantly with temperature 

[48]. The region of ES mode-locking with GS-CW also becomes slightly broader as the 

temperature decreases. Output power for different states was measured at 0 V, 2 V 

and 3.5 V reverse bias (Fig. 5.10 a, b, c). As can be seen, in a short cavity laser at 0 V 

reverse bias both states exist in CW but when reverse bias is applied (2 V, 3.5 V) to the 

absorber section the ES power is increased whilst GS power decreases and ESML can 

be achieved due to the saturation of the GS emission. With applied voltage the range 

of existence of GS continuous-wave (CW) emission decreases from almost 400 mA 

(from 125 mA to 500 mA for V=0V) to less than 200 mA (from 188 mA to 380 mA for 

V=3.5 V). This is explained by the fact that the losses in the saturable absorber are 
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increased with reverse bias and due to the finite number of QDs, GS gain is more 

quickly saturated with increasing current. As a result the ES emission plays a more 

dominant role. As shown in Fig. 5.10 b) and c) ES mode-locking is achieved with the 

coexistence of GS, and even without GS at high voltage, and at the expense of the gain 

current. Average power of GS for 2 mm long devices increases with current then drops 

with coexistence of ES. In the case of the shorter 1.3 mm cavity GS average power for a 

reverse bias of 0 V behaves similarly as can be seen in Fig. 5.2(b) to the 2 mm device 

and increases in the first place up to 47 mW for current from 125 mA to 240 mA and 

then the power drops to 28 mW as ES appears. With further increased current GS 

power, along with ES power, increases. At a current of 420 mA the power level of GS 

and ES is the same at around 45 mW. Higher applied gain current results in lower GS 

power and higher ES power. As the reverse bias increases up to 3.5 V the power level 

of GS reaches a maximum 8.6 mW as ES emission becomes more favourable due to GS 

saturation. The highest average power of 84.5 mW can be attained in the ES mode-

locking regime at 2 V reverse bias and 450 mA gain current. The average power for ES 

increases as applied voltage increases up to 2 V and then decreases with voltage while 

for 2 mm devices the average power always decreases with reverse bias for both GS 

and ES bands as shown in Fig. 5.3 (b). The increase of average power of ES is associated 

with gain saturation of GS while the following decrease of average power can be 

explained by an increase of the total loss at the expense of reverse bias.  
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Fig. 5.10 Average power dynamics for a 1.3 mm long device having 5 QD layers with (a) 0 V, (b) 

2 V and (c) 3.5 V reverse bias. GS/ES: ground-state/excited state. CW/ML: continuous-

wave/mode-locked operation. 

 The shortest pulse duration obtained for ES the spectral band is 4.6 ps at 2.5 V 

reverse bias and 230 mA gain current with 16.6 mW average power (Fig. 5.11 a). The 

full width half maximum of the optical spectra for ES (1188 nm) was 2.9 nm giving a 

time bandwidth product of 2.83 suggesting that the pulses are not transform limited.  

Shorter pulses for ES are demonstrated for lower current and the same is observed for 

GS 2 mm devices. The peak power of ES increases with gain current from 77 mW up to 

350 mW (Fig. 5.11 b). The highest peak power of 350 mW is achieved for a reverse bias 

of 2.5 V and driving current of 400 mA. The power level is similar to that which was 

achieved for the GS ML regime in a 2 mm laser. 
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Fig. 5.11 (a) Pulse width and (b) Peak power evolution with bias conditions for a 1.3mm long 

device having 5 QD layers. Number of measured points is ~ 400. 
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5.4.4 Conclusion.  

The dependence of the characteristics of the mode-locking regime upon the 

number of QD layers embedded in the active region of the lasers was studied. The 

highest peak power of 600 mW is achieved for 10 QD-layer lasers. The higher number 

of QD layers laser did show the improvement in peak power as increment in average 

power is accompanied by broader pulses, but the 15 layer QD lasers showed the 

widest range of mode-locking from 2 V to 10 V and driving current from 160 mA to 500 

mA. 

 Additionally, it was shown that the emission switching between the GS and ES 

bands can be achieved by changing the bias conditions, thus adding an extra level of 

freedom that can be effectively used for multi-wavelength ultrafast sources. It was also 

demonstrated that the cavity length also plays an important role in the achievement of 

a variety of mode-locking regimes involving both GS and ES. ES ML can be achieved 

either by decreasing the laser cavity’s number of layers (less than 10) up to 1 mm or 

increasing the applied current high enough in order to saturate GS. The average power 

for ES at shorter cavity length can be increased by reverse bias which is not possible in 

the case of GS for longer devices. Thus similar peak power level can be obtained for 

the ES band (1188nm).  

 

 

 

 

 



131 
 

5.5 Summary. 

Different operating regimes of QD-based monolithic two-section devices were 

investigated. The interplay between GS and ES transitions was studied in great detail. It 

was shown that ESML can be achieved at the expense of the current applied to the 

gain section. The dependence on bias conditions of several of the GSML and ESML 

characteristics was presented. Dual-wavelength mode-locking was demonstrated with 

83 nm spectral separation between the modes. Careful control of the structural 

parameters of the lasers can be effectively used for obtaining one or other emission 

mode. For example, the lasers with shorter cavity length (1.3 mm) allow achieving 

ESML even at low current, which cannot be observed for longer devices.  
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Chapter 6. Bistable quantum dot laser. 

6.1 The concepts of bistability (polarization, power, 

wavelength) and tunability. 

In 1964 Lasher proposed the first bistable Fabry-Perot injection laser emitting 

coherent or spontaneous light switched by electrical pulses or incident light [1]. 

Double–heterostructure (DH) semiconductor lasers demonstrated the optical 

bistability as well [2-3] which is associated with the existence of two stable outputs 

depending on one parameter. It is a well known effect in many types of semiconductor 

lasers now such as disk lasers [4], ring lasers [5-6], Fabry-Perot injection locked lasers 

[7-8], photonic crystal lasers [9], vertical-cavity surface-emitting laser diodes (VCSELs) 

[10-14]. There are different types of optical bistability such as polarization switching, 

power-bistability, current-bistability and wavelength-bistability which can be used for 

the development of the next generation of low cost and compact optical 

communication systems and all-optical processing components such as flip-flop 

memory switches and wavelength converters [15-18]. For example, in VCSELs 

polarization switching was observed depending on the injected current, temperature 

or wavelength [10-12]. From a distributed feedback semiconductor laser power-

bistability and switch on/off dynamic characteristics were reported [19-20]. In this 

context, bistability and hysteretic behavior of a quantum well laser with a saturable 

absorber due to bleaching of the saturable absorption with increasing pump power 

was explored in details [13-14, 21-23]. Recent progress of compact quantum-dot (QD) 

mode-locked lasers in generating high repetition rate ultrashort pulses along with low-

noise makes such lasers great candidates for high speed application system [24-26]. 

Moreover, power-bistability was also demonstrated with applied reverse bias to the 
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absorber in two-section QD lasers due to the quantum-confined Stark effect in 

absorber and saturation properties in gain and absorber [27-31]. In the previous 

chapter it has been shown the possibility of wavelength-bistability in QD based mode-

locked two-section lasers associated with the generating the pulses from GS or ES 

transitions controlled by the bias conditions of gain and absorber [32-38]. In this 

context, two-color lasing was reported from GS and ES simultaneously in CW [39-40] 

and pulse regimes [41]. On the other hand, simultaneous dual-wavelength ground 

state splitting (GSS) under CW was attributed to state filling effect [42]. Moreover, GSS 

in the mode-locked regime using the same mode was explained by Rabi oscillations in 

combination with the ac Stark effect [43] or homogenous and inhomogeneous 

broadening [31, 44-45].  Recently, it has been reported in two-section passively mode-

locked QD lasers with a 7.9 GHz pulse repetition rate, using a device with an active 

region which comprised of a tenfold stack of InGaAs QDs layers. Bistability between 

1166 nm and 1174 nm was achieved with power suppression ratios of 30 dB. However, 

the level of output power achieved in the latter work was rather low, ranging between 

0.2-0.8 mW for an operating temperature of 12⁰C [27-28]. Recently, we demonstrated 

robust, high power wavelength-bistability between 1245 nm and 1295 nm attributed 

to two different modes for monolithic two-section laser operating at 10 GHz frequency 

with average powers up to 25 mW for CW and 17 mW for mode-locking regimes. A 

suppression ratio higher than 40 dB was demonstrated  [46-47].  

Furthermore, currently-available QD growth technology enables a high degree of 

control over the emission spectrum of QD devices, which can be tailored for different 

applications, such as a broadly-tunable laser [48-52]. For instance, chirped multiple QD 

external-cavity diode lasers demonstrated impressive 208 nm tunability with near    

200 mW maximum output power [50]. Monolithic multi-section devices have only 
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shown continuous sweeping region between 1029.1 nm to 1017.4 nm (11.7 nm) and 

extending to 1004.3 nm (with a total 24.8 nm sweep range) by applying different 

current to the sections [52]. 

In this chapter, further improvement of a new approach is presented in order to 

achieve wavelength bistability and tunability in a monolithic multi-section QD laser, by 

using an active region which incorporates non-identical InAs QD layers which emit at 

distinct wavelengths. The widest range of wavelength bistability of 54 nm - the largest 

spectral range which is ever achieved, controllable via the reverse bias applied to the 

saturable absorber has been demonstrated. Wide wavelength tunability between  

1245 nm and 1290 nm under mode-locking regime with a 40 dB suppression ratio is 

demonstrated. Depending on the range of reverse bias applied, continuous wave (CW) 

or mode-locked regimes are obtained, with average powers up to 31 mW and 28 mW, 

respectively. This output power performance represents further improvement of 

magnitude when compared with previous results [27-28, 41, 47]. Moreover, 

electronically-controlled 45 nm tunability range is demonstrated from a monolithic 

multi-section mode-locked QD laser, allowing for the generation of picosecond pulses 

electronically tunable between 1245 nm and 1290 nm, with a pulse repetition rate of 

around 10 GHz [53]. This represents a completely new regime of operation of mode-

locked laser diodes, which significantly enhances their spectral versatility, while 

offering the potential for high-speed electronic tuning. 
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6.2 Device description. 

 

 

Fig.6.1 Schematic of a multi-section quantum dot laser. 

The investigated multi-section laser has a ridge waveguide width of 6 µm and a total 

length of 4 mm, resulting in a pulse repetition rate of 10 GHz when mode-locked, as 

defined by the cavity round trip time. The device consists of multiple 1-mm-long 

electrically-insulated sections; each of these further divided into 300 µm and 700 µm 

sub-sections. A reverse bias is applied to the two 300 µm sections placed nearer the 

back facet, thus forming a distributed saturable absorber with a total length of 

600 µm. The gain section is formed by the remaining sections which are forward 

biased (Fig.6.1). The output facet was deep-anti-reflection coated (on the gain section 

side), while the back facet was high-reflection coated (on the absorber side), with 

reflectivities of approximately 0.1% and 95%, respectively. The QD structure was 

grown on a GaAs substrate by molecular beam epitaxy. Its active region consists of 10 

InAs QD layers covered by non-identical InGaAs capping layers, incorporated into 
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Al0.35Ga0.65As cladding layers. The size of the QDs is related to the wavelength emission 

and can be control to some extent by manipulating the thickness of capping layers 

which leads to variance of the indium segregation into the QDs. As a result, the larger 

size of the QDs, the longer the emission wavelength. This structure consists of 3 QD 

layers with central wavelength emission at 1211 nm, 3 QD layers at 1243 nm and 

finally 4 QD layers at 1285 nm. The higher number of layers for larger QDs is used to 

keep the gain spectrum flat as the density of dots is decreased with the increasing QD 

size as explained in ref. [48]. The laser was kept at 20 ⁰C by a Peltier cooler.  The gain 

section was pumped with a low-noise current source and the absorber section was 

connected to a voltage source. The pulse durations were measured by a non-collinear 

autocorrelator based on second-harmonic generation. The spectral characteristics 

were measured by a spectrometer and mode-locking performance was further 

investigated with an RF spectrum analyzer in combination with a high-speed 29 GHz 

photodiode. 
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6.3 Experimental results and discussion. 

The QD laser demonstrated wavelength bistability for fixed currents of 260 mA,        

300 mA, and 330 mA applied to the gain section and the reverse bias between 0 V and 

10 V, in both ascending and descending directions. Threshold current density was    

370 A/cm2 under 0 V reverse bias. For a fixed current of 260 mA as depicted in          

Fig. 6.2 a, the widest spectral separation of 54 nm was obtained between 1296 nm and 

1242 nm at -4.6 V reverse bias. Pulse duration is changing from 24 ps to 4 ps with 

reverse bias changing from -2.6 V to -7 V (Fig. 6.2 b). At a gain current of 260 mA the 

pulse duration depends on the direction of applied voltage which is explained by 

different operating wavelengths (Fig.6.2 b).   

 

 

 

 

 

 

 

Fig. 6.2 (a) Dynamics for a fixed gain current of 260 mA with various values of ascending and 

descending reverse bias of the emission wavelength ; (b) pulse duration and (c) output power.  
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Shorter pulse durations were measured for the 1245 nm wavelength. 

A transition in the laser operation mode – between CW and mode-locking – was 

found for a reverse bias of ~3 V for ascending and 2.6 V for descending directions for 

fixed current of 260 mA. Mode-locking wavelength switching was observed at ~4.8 V. 

The output power hysteresis occurs between 0-6 V reverse biases shown in Fig. 6.2 (c) 

due to nonlinear saturation of the QD absorption and quantum confined Stark effect in 

the absorber [27, 29-30].  

When applying a higher fixed current of 300 mA and 330 mA, wavelength switching 

behaviour was observed, similar to what had been observed at 260 mA fixed current. 

However, at higher reverse bias values, a different regime of operation was obtained. 

(Fig.6.3 a, b). The region of mode-locking in descending direction for 330 mA current is 

slightly wider then ascending direction.   

 

 

Fig.6.3 Dynamics of the emission wavelength with various values of ascending (black line) and 

descending (red line) reverse bias for a fixed gain current of a) 300 mA and b) 330 mA in 

continuous wave (CW) and mode-locking (ML) regimes of operation. 
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Pulse duration varies from 28 ps to 4 ps for -3 V and -10.6 V applied voltage, 

respectively (Fig. 6.4a, b). Pulse duration is slightly higheras the current increases 

which is well known due to the increase in self-phase modulation effect [54]. Pulse 

duration at low reverse bias at 300 mA gain current for ~1285 nm wavelength this time 

is shorter than for ~1245 nm wavelength, while for a higher gain current of 330 mA the 

pulse duration is about the same for both wavelengths as the result of interplay 

between gain current and nonlinear absorption in the absorber for the different 

spectral band.  

 

Fig. 6.4 Dynamics of the pulse duration with ascending (black line) and descending (red line) 

direction of applied reverse bias for a fixed gain current of (a) 300 mA and (b) 330 mA.     

  

Noticeable hysteresis of average power is demonstrated in Fig.6.5 a, b for a fixed 

current of 300 mA and 330 mA with applied reverse bias associated with switching the 

laser operation from one wavelength to another. 

   

 

3 4 5 6 7 8 9 10 11
0

4

8

12

16

20

24

28 b I=330mA_T=200C

P
u

ls
e 

d
u

ra
ti

o
n

 (
p

s)

Reverse Bias (V)



145 
 

 

Fig. 6.5 Dynamics of the average power with descending (black line) and descending (red line) 

direction of applied reverse bias for a fixed gain current of (a) 300 mA and (b) 330 mA. 

 

The highest output powers measured for 300 mA fixed current were 30.4 mW   

(25.7 mW) and 27 mW (20.7 mW) for CW and mode-locking regimes at ~1245 nm 

(~1295 nm), respectively. Wavelength tunability region between -7 V and -10.6 V 

applied voltage is observed for 300 mA as well as for 330 mA. At that unique mode-

locking region, the wavelength can be tuned from 1245 nm to 1290 nm by applying a 

reverse bias to the absorber. It can be explained by the increased absorption which 

leads to a reduction of the laser power and the absorber current. As a result, a red 

shift of the absorption peak of the QD occurs with increasing reverse bias [30, 55]. It 

was shown that absorption spectra shifts to lower photon energies with increasing 

electric field up to 21% at 1.32 µm at 18 Volt bias for 3 QD layers InAs waveguides [55]. 

Such changes would favor mode-locked operation towards increasingly longer 

wavelengths, within the available broadband gain. 

As evidence of this tuning regime for 300 mA fixed current in the ascending 

direction, the corresponding optical spectra are depicted in Fig.6.6 (a) along with 

autocorrelations and RF spectra (shown in Fig.6.6 b, c). 
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Fig 6.6 (a) Spectral tunability,( b) corresponding autoccorelations and (c) RF spectra in the 

ascending direction for a fixed gain current of 300 mA with applied reverse bias. 

 

A suppression ratio higher than 40dB suggests the effectiveness of using novel QD 

material for building tunable electrically controlled optical source (Fig. 6.7).  

 

 

 

 

 

Fig. 6.7 Spectral tunability with high suppression ratio of more than 40 dB in descending 

direction for a fixed gain current of 330 mA with applied reverse bias.  
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Moreover, dual-mode CW regime is observed for descending direction at low 

reverse bias between 0 and -1 V for gain current between 300 mA and 330 mA with a 

high suppression ratio and with similar output power of ~15 mW in each spectral mode 

(Fig.6.8 a, b). 

 

Fig. 6.8 Dual-mode generation with 40 dB suppression ratio in both mode with similar power 

of 15 mW in descending direction at 0 V reverse bias  for a fixed gain current of a) 300 mA and 

b) 330 mA. 
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6.4 Conclusions. 

In conclusion, robust wavelength bistability and tunability was demonstrated in a 

multi-section monolithic laser diode incorporating chirped QD layers. The highest 

achieved spectral bistability range was 54 nm, generating picosecond pulses at 10 GHz 

at 1245 nm or 1295 nm. The unique mode-locking regime of operating with a broad 

wavelength tunability range (45 nm) was shown as well where the wavelength was 

electronically controlled by applied reverse bias to the absorber section. It is important 

to stress that the spectral range reported here is important for all-optical processing 

and optical communications applications, due to the minimum dispersion that optical 

fibres exhibit in that range. 
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7. External cavity Quantum Dot lasers. 

7.1 Introduction. 

7.1.1 An external cavity configuration laser. 

High-power, electrically-pumped mode-locked semiconductor lasers generating 

picosecond/femtosecond pulse trains have been regarded as potentially suitable for a 

wide variety of applications as mentioned in 1.3. Unique properties of QD 

semiconductor material such as low threshold current density, low optical losses, and 

low noise characteristics (discussed in 2.3) enable the fabrication of long-cavity and 

extremely high wall-plug efficiency lasers [1-3]. Quantum-dot based external-cavity 

configurations lasers are excellent candidates for systems where the reduced and 

broadly tunable repetition rate is required, which is not achievable with monolithic 

mode-locked lasers [4-7]. It is particularly important for the nonlinear multiphoton ex     

citation fluorescence bioimaging [8-10]. In addition, an extra level of versatility is 

possible through the introduction of appropriate optical elements (prism or grating) 

for tunability regime operation [11-12] or appropriate dispersion compensation [4, 7]. 

Moreover, the QD mode-locked lasers exhibited low timing jitter due to the reduced 

values of amplified spontaneous emission coupled to the wavelength of operation, 

when compared with QW or bulk material [13]. Indeed, spontaneous fluctuations in 

the number of photons represent one of the major sources of timing jitter, as it 

imparts random fluctuations in the index of refraction, thereby affecting the round-trip 

time and thus the timing of the pulses. In addition, the thermal and mechanical 

instabilities take place in the case of external-cavity mode-locked lasers which 

contribute to timing jitter. But if these instabilities are overcome, an improvement in 

the phase noise and timing jitter is expected in a stable external-cavity laser as the 
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active waveguide occupies only a fraction of the optical cavity [14]. In this chapter the 

latest results achieved with a QD-external cavity passively mode-locked laser are 

presented [15-18]. 
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7.1.2 Experimental setup and device. 

The QD chip was grown by molecular beam expitaxy (MBE) on an n+-GaAs (100) 

substrate which contained 10 layers of self-assembled InAs/GaAs QDs. The waveguide 

in gain section is bent and terminated at an angle of 7° relative to the cleaved facet, in 

combination with antireflection (AR) coating (R~10-5), while the back facet was high-

reflection (HR) coated (R~95%). The total chip length is 4 mm, with a 600-μm-long 

saturable absorber section placed near the back facet resulting in absorber-to-length 

ratio of 15%. The temperature of the chip was maintained at 20°C by thermoelectric 

cooler control. A collimating aspherical lens with a numerical aperture of 0.55 was 

used to couple light to and from the chip. The output beam was focused onto a single-

mode fibre splitter and input autocorrelator, radio-frequency (RF) spectrum analyzer 

and optical spectrum analyser for measurements. . An output coupler of variable 

transmissivity used for the external cavity facet was mounted on motorized translation 

stage with a 0.1 µm step motion. QD-external cavity mode-locked laser with an output 

coupler of 96% transmissivity showed the possibility of delivering high peak power (see 

section 7.2) while a laser with an output coupler of 53% exhibited the performance of 

fundamental and harmonic mode-locking along with low timing jitter (see section 7.3 

and 7.4). A simplified schematic of the experimental setup for a QD-external cavity 

passively mode-locked laser is depicted in Fig.7.1. 
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Fig. 7.1 The experimental setup for an external cavity laser system (QD curve TS: quantum 

dot curved two-section diode; A- Absorber section, G- Gain section, L: lens, OC: output coupler 

(T=53 % or 96 %), TS: motorized translation stage,, OI: optical isolator, HWP: haft wave plate, F: 

fibre, FS: single mode fibre splitter, PD: photo diode, RFSA: RF spectrum analyzer, AUT: 

autocorrelator, OSC: oscilloscope, OSA/SA: Optical spectrum analyzer/ Spectrum analyzer, PC-

personal computer). 
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7.2 A high peak power laser. 

In this section an InAs quantum-dot external-cavity passively mode-locked laser 

with an operation wavelength of 1.27 µm is demonstrated, based on a two  section 

quantum-dot superluminescent diode with bending ridge waveguide and a 96 % 

output coupler. Stable mode-locking with an average power up to 60 mW was 

obtained at a repetition frequency of 2.4 GHz. This performance corresponds to a 25 pJ 

pulse energy obtained directly from the oscillator, which represents a 55-fold increase 

in pulse energy when compared to the current state-of-the-art for semiconductor 

lasers. At a repetition frequency of 1.14 GHz, optical pulses of 13.6 ps with an average 

power of 23.2 mW resulting in 1.5 W peak power are also demonstrated, representing 

the highest peak power achieved from an external-cavity laser at the 1.3 µm 

waveband, without the use of any pulse compression or optical amplification [15-16]. 
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7.2.1 State of the art.  

For the first time a QD external-cavity mode-locked laser at 1.27 µm was 

demonstrated in [5]. The QD laser with a repetition frequency of 5 GHz generated 

optical pulses of 15 ps which were sent to the grating compressor, resulting in 1.2 ps 

pulses. The amplified average power after compression was 7.2 mW resulting in 1.22 

W peak power and 1.46 pJ pulse energy [5]. In another report [6], the repetition rates 

from 350 MHz to 1.5 GHz, with average output power of up to 27 mW (860 MHz) at 1.2 

µm, were achieved by external-cavity quantum-dot lasers incorporating separate 

quantum-dot semiconductor saturable absorber mirrors (SESAMs).  

The inclusion of an intra-waveguide saturable absorber opposed to the SESAM 

configuration previously demonstrated imparts more robustness and ease of 

alignment to the laser cavity. In a more recent investigation [7], a QD-external cavity 

mode-locked laser is demonstrated with record-low repetition rates of 310 MHz, albeit 

with a modest pulse energy around 0.45 pJ which was shown to be independent of the 

repetition rate. The highest peak power achieved after intra-cavity pulse compression 

was 0.41 W [7]. Furthermore, the improvement in peak power without the use of any 

optical amplification and pulse compression from the QD-external cavity mode-locked 

laser is presented in the next section. 
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7.2.2 Experimental results and discussion. 

Light-current (L-I) characteristics of the QD based laser without external feedback 

and of the external-cavity laser using 96 % output coupler with reverse-bias of 0 V and 

7.2 V on the absorber are shown in Fig. 7.2.  
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Fig. 7.2 Light-current characteristics of the QD laser (a) without external feedback; and (b) 

the external-cavity laser for 0 V and 7.2 V reverse bias. 

 

Output power of 17.2 mW was obtained at a forward current of 500 mA applied to 

the gain section. The secondary-derivation curve of the laser shows a negligible peak, 

which hints an effective suppression of back reflection. When 7.2 V reverse bias is 

applied to the QD absorber a hysteresis loop of 45 mA width is observed as depicted in 

the figure 7.2 b. Such behaviour can be explained by the non-linearity of saturation in 

the absorber section. A continuous wave (CW) output power of nearly 100 mW can be 

achieved with an applied reverse bias of 0 V and forward bias current of 500 mA, while 

for the mode-locked operation regime an average power reaches up to 35 mW under a 

7.2 V reverse bias. A mixture of fundamental mode-locking and high-order harmonic 

mode-locking may exist as the higher current is applied to gain section due to an 
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earlier and more complete gain recovery time, which in combination with the 

relatively long pulse roundtrip time in the long cavity, could lead to the appearance of 

multiple pulses in a wider net gain window. In fact, the superlinear behaviour of the L-I 

curve for 7.2 V reverse bias above 375 mA in Fig. 7.2 (b) is indicative of the increasing 

proportion of higher-order harmonic modes. As a result the external cavity laser 

alignment should be optimised for each operating point in order to achieve robust 

fundamental mode-locking at a higher current losing only a few mW in power. For gain 

current values equal and above 330 mA, robust fundamental mode-locking was 

achieved after optical feedback adjustment, with the corresponding RF peak exhibiting 

a signal-to-noise-ratio in excess of 50 dB. 

In Figure 7.3, the autocorrelation, optical and RF spectra are represented for 7.2 V 

reverse bias and 457 mA forward current. Under these operating conditions, the 

FWHM of the autocorrelation trace is 19.2 ps (Δt) using Gaussing fit which results in 

deconvolved pulse duration of 13.6 ps (Δτ). RF spectra with a dynamic range of 50 dB 

are indicating about very stable mode-locking. The average power of 23.2 mW at a        

1.14 GHz repetition frequency results in the highest peak power of 1.5 W and 20.4 pJ 

pulse energy. Knowing the mode-locking lasing wavelength of 1274 nm with 1.2 nm 

full-width at half maximum, the time-bandwidth product of 3.02 can be calculated. 

Remarkably, a minimum time-bandwidth product of 1.01, only 2.3 times the Fourier 

limit, was obtained under 7.2 V reverse bias and 330 mA forward current with a pulse 

duration of 8.4 ps.  

As depicted in Figure 7.4, the average power and pulse duration increased with 

forward current for a fixed reverse bias of 7.2 V and under the fundamental mode-

locking conditions, as a result the peak power varies little even under a high drive 

current.  
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As is well known with the reduction of the reverse bias, the average power increases. 

Stable mode-locking with an output average power up to 60 mW was achieved with 

low reverse bias of 1.4 V corresponding to 25 pJ pulse energy was obtained at a 

repetition frequency of 2.4 GHz and 375 mA forward current - however, for these 

operating conditions, a broad pulse with 44 ps duration was generated. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3 (a) Autocorrelation trace, (b) optical spectrum, (c) RF spectrum with 500 MHz 

span and (d) 10-GHz span at a reverse bias of 7.2 V and forward current of 457 mA. 
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Fig. 7.4 (a) Peak power, average power and (b) pulse duration versus forward current 

with 7.2-V reverse bias. 
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7.2.3 Conclusions.  

Electrically pumped 1.27 µm QD-ECMLLs with peak power of 1.5 W and average 

power of 23.2 mW with a repetition frequency of 1.14 GHz are achieved without the 

use of any pulse compression or optical amplifier. Stable mode-locking with an average 

power up to 60 mW, corresponding to 25 pJ pulse energy was also obtained at a 

repetition frequency of 2.4 GHz. The minimum time-bandwidth product of 1.01 was 

obtained with the pulse duration of 8.4 ps. 
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7.3 Fundamental and Harmonic Mode-locking. 

A systematic investigation of a repetition-rate-tunable quantum-dot external-cavity 

passively mode-locked laser with a quasi-continuous fundamental frequency tuning 

range from 1 GHz to a record-low value of 191 MHz is demonstrated [16, 18]. A nearly 

constant pulse peak power at the different pulse repetition rates is revealed in the 

continuous frequency tuning range. The trend and optimization of the stable 

fundamental mode-locking are presented and interpreted. Furthermore, a very broad 

harmonic repetition rate tunable range with picosecond pulses up to 6.8 GHz 

corresponding to 34thorder harmonic of 200 MHz fundamental frequency is shown 

[17]. 
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7.3.1 State of the art. 

The versatility that QD based external-cavity lasers can offer for broad tunability of 

the pulse repetition rate in the range of MHz to GHz is very useful for non-linear 

imaging techniques [8-10]. As mentioned in 7.2.1 a fundamental repetition rate 

tunable range from 1.5 GHz to 350MHz can be achieved from a QD-external cavity 

mode-locked laser by changing the position of the QD SESAM [6]. The tunability of the 

fundamental repetition rate from 310 MHz to 1.1 GHz and harmonic repetition rate up 

to 4.4 GHz corresponding to 4th order harmonic of 1.1 GHz fundamental frequency was 

demonstrated [7]. High-peak-power QD-external cavity laser performance with 

repetition frequency from 2.4 GHz to 1.14GHz using an output coupler of 96% 

transmissivity were demonstrated in  the previous section 7.2 as well as in [7, 15-16]. 

Further investigations of fundamental and harmonic mode-locking from QD-external 

cavity mode-locked laser (shown in Fig. 7.1) are demonstrated in next two sections 

only using this time a 53% output coupler, which generally lead to lower output power, 

but also lower threshold current than with the 96% output coupler. It was found that 

such higher feedback strength was instrumental for achieving stable fundamental 

mode-locked operation with pulse repetition rates lower than 1GHz. A broad 

continuous fundamental frequency tuning range from 1 GHz to 191 MHz along with a 

very broad harmonic repetition rate tuning range up to 6.8 GHz corresponding to 34th 

order harmonic of 200 MHz fundamental frequency are presented and discussed.  
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7.3.2 Fundamental Mode-locking experimental results.  

The RF spectra with a 10-GHz span for a variable fundamental mode-locking 

repetition rate from 1 GHz to 191 MHz at reverse bias of 8 V and forward current of 

300 mA is shown in Fig. 7.5. The corresponding total optical cavity length varies from 

15 cm to 78.5 cm. The output coupler of 53 % transmissivity was mounted on the 

translation stage with a 0.1 μm step motion. As a result, the level of continuity of 

tuning the repetition rate depends on the control precision of the frequency which can 

be up to 700 Hz and 30 Hz at the repetition rate of 1 GHz and 200 MHz, respectively. 

The large number of harmonics in the RF spectra indicates the high quality of mode-

locking for all cases, as depicted in Fig. 7.5. 

 

 

 

 

 

 

 

 

Fig. 7.5 Representative RF spectra with 10 GHz span at a reverse bias of 8 V and forward 

current of 300 mA recorded for the variable repetition rate from 1 GHz to 191 MHz.  

 

Further investigations of the mode-locking performance were carried out for the 
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different repetition rates. The region of stable fundamental mode-locking regime for 

the repetition rate of 750 MHz is achievable between 3 V and 8 V reverse bias and 

forward current between 250 mA and 480 mA as plotted in Fig. 7.6. 

 

Fig. 7.6 A stable fundamental mode-locking regime with a repetition rate of 750 MHz. 

As mentioned in section 7.2.2, the external cavity optical feedback from the output 

coupler should be optimized for each operating point in order to achieve stable 

fundamental mode-locking. In the robust operation area highlighted in Fig. 7.6, stable 

fundamental mode-locking can be obtained more easily and the setup has a high anti-

jumping ability, e.g. resilience to vibration which is indicative of great application 

prospect. The region of robust fundamental mode-locking became narrower with 

higher values of current applied to the gain section due to the increasing tendency of 

the propagation of multiple pulses within the cavity which is favorable for operating in 

a harmonic mode-locking regime and a well-known phenomenon observed in 

monolithic mode-locked lasers [7, 19-20]. For the other pulse repetition rates, similar 
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mode-locking operation trends can be observed. 

The peak power under 8 V reverse bias was found to remain nearly constant at 

about 0.5 W with increasing repetition rate from 191 MHz to 1 GHz at fix 300 mA 

forward current (Fig. 7.7 a) and with increasing current from 300 mA to 420 mA at a 

fixed 375 MHz repetition rate (Fig. 7.7 b). The average power increasing from 1 mW to 

4.5 mW is linearly proportional to the repetition rate changing from 191 MHz to 1 GHz 

(Fig. 7.7 a) which implies that the constant pulse energy required to saturate the 

absorber is independent of repetition rate under certain operation conditions. This 

result is in principle in keeping with the conclusion reported in Ref. [21], where there is 

mention of constant pulse energy irrespective of pulse duration, repetition rate, 

reverse bias or drive current, for optimum mode-locking conditions. However, the fact 

of gradual increasing of average power and somewhat peak power with the increasing 

gain current for a certain reverse bias at a certain repetition rate (as in fig. 7.7 b) 

reveals an important issue for the employed external cavity setup (Fig. 7.1). The pulse 

duration slightly increases from 9.3 ps to 12 ps from 1 GHz to 281 MHz and then 

slightly decreases from 12 ps to 10.2 ps as repetition rate is further decreased up to 

191 MHz (see fig. 7.7a). For the lowest 191 MHz fundamental repetition rate at 8V 

reverse bias and 300 mA forward current the pulse duration was 10.2 ps (fitted to a 

Gaussian pulse shape) as presented in the inset of fig.7.7a. The central wavelength was 

1268 nm, with a full-width half-maximum of 5 nm, resulting in a time-bandwidth 

product of 9.5.  
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Fig. 7.7 Dynamics of a peak power and average power at 8 V reverse bias for (a) different 

pulse repetition rate for a fixed forward current of 300mA, inset: autocorrelation trace for 191 

MHz corresponding to 10.2 ps pulse duration and (b) different driving forward current for a 

fixed repetition rate of 375 MHz. 

 

For sustaining stable fundamental mode-locking, in one hand, the net gain should 

be low enough in a wide time window in order to suppress the high-order harmonic 

mode-locking, so the optimization of the feedback plays an important role. On the 

other hand, the pulse round trip time should not be much longer than spontaneous 

recombination time (for QD material in order of 1ns) otherwise stable mode-locking is 

overcome by spontaneous emission as noticed in [4, 6]. In order to keep the optical 

feedback at the appropriate level for stable fundamental mode-locking, it was noted 

that the photocurrent in the absorber should be kept at 6 mA-8 mA for optimal 

absorption saturation, independently of how much current was applied to the gain 

section. Consequently, the average output power (pulse energy) of stable fundamental 

mode-locking can be increased with increasing gain current due to the fixed 

transmissivity of the output coupler and the adjustable optical feedback. Obviously, for 

a higher gain current, a lower optical feedback is required to keep the balance of gain 
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and loss to achieve a stable fundamental mode-locking. Accordingly, as shown in 

previous section (7.2) a QD-based external cavity laser with an output coupler with 

higher transmissivity of 96 % will produce a higher output power, although the 

resonance formation and optical feedback adjustment are more challenging at a low 

frequency operation.  
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7.3.3 Harmonic Mode-locking experimental results. 

An output coupler of 53 % transmissivity was placed 74 cm away from the external 

cavity two-section QD laser. The gain section of the laser was forward biased with 300 

mA and reverse bias of 8V was applied to the absorber section. Fundamental mode-

locking was achieved at 200 MHz frequency (corresponding to 5 ns pulse period). RF 

spectra with 10 GHz span was recorded as shown in Fig. 7.8 a), exhibiting a large 

number of harmonics indicating stable mode-locking. As discussed above, harmonic 

mode-locking can be achieved by increasing driving current to the absorber but at the 

same it is well known that pulse duration increases with current due to an increase in 

self-phase modulation effects with optical power, which in combination with the group 

velocity dispersion in the semiconductor laser leads to a pulse broadening with 

increasing current [22]. Wonderfully, harmonic mode-locking at fixed low gain current 

of 300 mA, reverse bias of 8V and cavity length corresponding to 200 MHz 

fundamental frequency was achieved by simply adjusting the collimating lens. A very 

broad harmonic repetition rate tunable range with picoseconds pulses from 800 MHz 

(4th-order harmonic) up to 6.8 GHz corresponding to 34thorder harmonic of 200 MHz 

fundamental frequency was observed as shown in Fig. 7.8 b.  
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Fig. 7.8 (a) RF spectrum with 10 GHz span corresponding to a fundamental pulse repetition 

rate 200 MHz measured under a reverse bias of 8 V and forward current of 300 mA. The 

resolution and video bandwidth for this acquisition were 30 Hz and 3 Hz, respectively. (b) A 

broad tunable harmonics repetition rate region up to 6.8 GHz – 34th order harmonic of a 200 

MHz fundamental frequency. 
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7.3.4 Conclusion. 

To conclude, the QD-based external cavity mode-locked laser offers broad 

repetition-rate tunability not only in fundamental but as well in harmonic regime of 

operations from a record low 191 MHz (fundamental) frequency to 6.8 GHz (harmonic) 

which can be very useful for ultrafast applications.  
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7.4 Narrow RF linewidth. 

A record-low -3dB RF linewidth of ~30 Hz from the QD-based external- cavity 

passively mode-locked laser is illustrated for fundamental frequency of 281.3 MHz, 

which indicates the low noise and high stability operation of the device. The U 

dependence of -3dB RF linewidth with different fundamental repetition rates is 

measured and depicted [16, 18]. 
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 7.4.1 State of the art. 

QD monolithic passively mode-locked lasers have shown very low noise 

performance, exhibiting a record-low RF linewidth of 500 Hz at 10 GHz repetition rates 

[23].   In a similar manner, a 1.58 µm quantum-dash-based passively mode-locked laser 

at 17 GHz has shown a RF linewidth of 500 Hz by using external optical feedback [24].  

Lately, an RF linewidth narrowed up to 350 Hz by used of the external optical feedback 

was achieved from 5 GHz QD passively mode-locked laser [25]. Record-low noise 

performance from 12.8 GHz QD-based active harmonic mode-locked laser was made 

possible due to the external cavity configuration and electrical synchronization 

resulting in very low residual integrated timing jitter of 7.5 fs (in the range of 1Hz and 

10 MHz) limited only by the driving synthesizer noise [26]. Such performance of mode-

locked semiconductor lasers confirms the importance of QD materials in the pursuit of 

low-noise pulsed laser sources. In this section the lowest RF linewidth of ~30 Hz is 

presented from QD-based external cavity mode-locked laser. In addition, the 

dependence of RF linewidth on different repetition rates is studied. 
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  7.4.2 Experimental results and discussion. 

The experimental setup used for this experiment is the same as described in section 

7.1.2 with an output coupler of 53 % transmissivity mounted on translation stage. A 

stable QD-based external cavity passively mode-locked laser operating regime was 

observed at 8V reverse bias and 300 mA for different repetition rates and RF spectra 

with 10 KHz span were measured with high resolution and video bandwidth (30Hz and 

3Hz respectively) in order to determine the -3 dB RF linewidth by using a Lorentzian 

lineshape fitting. An extremely narrow -3 dB RF linewidth of ~30 Hz was attained at 

281.3 MHz fundamental frequency due to the fact that the active waveguide occupies 

only a small fraction of the optical cavity (Fig. 7.9 a, b).  

 

Fig. 7.9 (a) RF spectrum measured at a reverse bias of 8 V and forward current of 300 mA, at a 

281 MHz pulse repetition rate. (b) RF spectrum with a 10 KHz span, with a -3dB linewidth of 

~30 Hz (obtained after Lorentzian fit). The resolution and video bandwidth for this acquisition 

were 30 Hz and 3 Hz, respectively. 
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was carried out for the same bias conditions (8 V, 300 mA). It was found that as the 

repetition rate decreases from 332 MHz to 191 MHz the RF linewidth decreases from 

300 Hz to 30 Hz as well, as shown in Fig. 7.10, after which the RF linewidth changes the 

trend in the opposite direction and increases up to 100 Hz. It is quite easily explained 

by two factors. In the first place, the cavity length which is longer for shorter repetition 

rates as the air occupies a higher fraction of the optical cavity, has less influences on 

the linewidth. Secondly, after a certain point mechanical instabilities along with 

spontaneous emission and perhaps some other factors play major role in defining the 

RF linewidth.   
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Fig. 7.10 Dynamic of -3 dB RF linewidth with frequency from the QD-Based external cavity 

mode-locked laser at a reverse bias of 8 V and forward current of 300 mA. 
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7.4.3 Conclusion. 

QD based external cavity passively mode-locked lasers with ultra narrow RF 

linewidth of  ~30 Hz have shown great potential as low-noise ultra-fast optical devices 

which can be used for varieties of applications including telecommunications.   
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7.5 Summary. 

Electrically-pumped 1.3 µm QD mode-locked laser has shown great potential as a 

high power low noise optical source with tunable repetition rate. An average power of 

60 mW at a repetition rate of 2.4 GHz corresponding to 25 pJ pulse energy was 

demonstrated. A high peak power of 1.5 W was achieved at a repetition rate of 1.14 

GHz with optical pulses of 13.6 ps and an average power of 23.3 mW.  The possibility 

of harmonic and fundamental mode-locking adds an extra level of versatility to the 

device which was achieved by using external cavity configuration. A fundamental 

frequency tuning range from 1 GHz to a record-low value of 191 MHz along with a 

harmonic repetition rate up to 6.8 GHz corresponding to 34thorder harmonic of 200 

MHz fundamental frequency were presented. A low noise and high stability operation 

of the QD-based external-cavity passively mode-locked laser was illustrated by a 

record-low -3dB RF spectra of ~30 Hz for a fundamental frequency of 281.3 MHz. 
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Chapter 8. Quantum-Dot tapered lasers. 

8.1 Introduction. 

8.1.1 Basics of tapered lasers. 

Low-cost, miniature semiconductor diode lasers are highly efficient light sources 

which have been widely used in a range of applications, most notably in optical fibre 

communications and biomedical applications. The improvement in their performance 

in terms of ultrashort pulse generation, good beam quality, high peak power as well as 

high average power will transform such devices into extraordinarily interesting and 

promising candidates for an extended variety of applications in industry and science, 

ranging from nonlinear biomedical imaging, nano-surgery, materials processing 

through to laser projector displays and free space optical communications [1-5]. Edge-

emitting mode-locked semiconductor lasers with flared (tapered) waveguides are well-

known for their capability to deliver high output power as well as ultrashort pulses [6-

13]. For example, a single contact tapered mode-locked laser incorporating 3 layers of 

InGaAs quantum wells can generate pulses as short as 850 fs at 116 GHz resulting in 60 

mW peak power [14]. But typically tapered lasers consist of a straight ridge-waveguide 

section coupled to a tapered section [7-10, 13]. Quantum-well tapered lasers with 

index-guided straight ridge waveguide section coupled to a gain-guided tapered 

section were effectively realized, generating high output power (more than 14 W at 

980 nm) with good beam quality (M2 <2) [8-10]. While the straight waveguide acts as a 

spatial filter in the cavity, the tapered section of increasing width delivers high power. 

As a result, tapered lasers show a great potential for providing single spatial mode, 

good quality beams with high power, as demonstrated by Mar et. al. [15]. In this 

paper, mode locking was achieved in an external cavity configuration, while using a 
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quantum well In0.2Ga0.8As tapered laser – resulting in the generation of 3.3 ps pulses 

with 2 W peak power in the waveband of 980 nm [15]. Alternative technology based 

on high power passively mode-locked slab-coupled optical waveguide lasers (SCOWLs) 

has been demonstrated by several groups [16-17]. For instance, a 1.5 µm InGaAsP 

multi-quantum well mode-locked semiconductor SCOWL produced 10 ps pulses with 

energies of 58 pJ and average powers of 250 mW at a repetition rate of 4.29 GHz 

achieving 5.8 W peak power [16]. Moreover, in external-cavity configurations, record-

high peak power pulses have been generated from edge-emitting external-cavity lasers 

with additional amplification and compression stages (and thus unavoidably larger 

footprint), resulting in pulses with 2.5 kW peak power [18]. VECSELs have also 

demonstrated their usefulness for ultrafast applications which require high peak 

power, such as multi-photon imaging [19]. 
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8.1.2 Different designs of tapered laser. 

 Passively mode-locked quantum-dot (QD) lasers have attracted much attention of 

late as efficient compact ultrafast and high-power light sources due to their unique 

properties as discussed above in section 2.3 [20-22]. The combination of tapered 

waveguide laser design for higher power and passively mode-locking technique for 

short pulse duration has been successfully shown [23]. Tapered lasers can be designed 

in different ways: fully index-guided, index-gain guided designs (Fig.8.1 a, b). The latter, 

as it was mentioned above, can generate high continuous wave (CW) output power. 

Quantum-dot fully index-guided tapered lasers were able to generate transform-

limited pulses with pulse durations of 360 fs, average power up to 15.6 mW, resulting 

in only 2.25 W peak power (under 12⁰C operating temperature), although the 

mechanisms for the generation of transform- limited pulses from such a device 

without any additional dispersion compensation are not fully understood [24]. A new 

laser structure was proposed and processed by III-V Lab using fully gain-guided design 

(Fig. 8.2). More details about the new design will be given in the next section.  

 

 

 

 

 

 

Fig. 8.1 A schematic of the tapered (a) fully-index and (b) index- gain-guided lasers. 

a b 
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In addition, fully gain-guided tapered lasers have the advantage of simpler, lower 

cost and rapid fabrication process compared to other tapered laser designs as it does 

not require any etching of a ridge. 
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8.2 First iteration of tapered lasers. 

In the first iteration devices, the highest peak power of 3.6 W was achieved from a 

monolithic passively mode-locked quantum-dot tapered laser by using fully gain-

guided tapered laser geometry [25].  

The fabricated and investigated tapered lasers incorporated either 5 or 10 layers of 

InGaAs/GaAs quantum dots. Picosecond pulse generation with a high average power 

of 209 mW corresponding to   14.2 pJ pulse energy with 14.65 GHz repetition rate is 

demonstrated, which is more than one order of magnitude higher than previous 

results [24].  
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8.2.1 Fully gain-guided high power tapered lasers.  

 

Fig. 8.2 A schematic of the tapered fully gain guided laser. 

The QD epitaxial structures used in the tapered lasers were grown on a GaAs 

substrate using Molecular Beam Epitaxy (MBE). Two different structures were used, 

where the active region consisted of either 5 or 10 identical layers of InAs quantum 

dots separated by 33 nm GaAs barriers and incorporated in a AlGaAs waveguide with 

35% Al content. The tapered lasers were fabricated with planar gain-guided tapered 

and straight waveguide section defined only by ion implantation, resulting in a gain-

guided geometry (Fig. 8.3). The spontaneous emission coupling factor (β) in gain-

guided lasers is larger than that in lasers with a comparable active layer volume and 

with a built-in index waveguide [26]. Owing to the large β, the spectral width of gain-

guided lasers is significantly broader compared to lasers with a built-in index 

waveguide [26-27]. Accordingly, broad spectra of gain-guided lasers could afford 

potential for narrow pulses compared to index-guided lasers provided all of the 

bandwidth can be engaged coherently. The tapered sections are 2370 µm and 2380 

µm long for the 5 layers and 10 layers devices respectively, with 2° taper angle, while 

the single spatial mode straight sections for mode filtering have a 400-µm length in 

both devices resulting in an absorber-to-gain length ratio of 1:6. A reverse bias was 

Taper
section

Absorber
section

QD layers
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applied to the straight waveguide section, which acted as a saturable absorber. The 

total lengths of the devices were therefore 2.77 mm (2.78 mm), resulting in a pulse 

repetition rate of 14.65 GHz (14.57 GHz). The anti-reflection coating (TiO2/SiO2) on the 

tapered section side and the high-reflection coating (Al2O3/Si)*3 on the ridge side were 

3% and 95%, respectively. The central operating wavelengths are around 1250 nm 

(1260 nm) for the 5- and 10-layer devices, respectively. The lasers were mounted on a 

Peltier cooler and their operating temperatures were stabilized at 20⁰C. 
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8.2.2 Experiments and Discussion. 

 By changing the driving conditions of the tapered and absorber sections (to which 

forward and reverse bias were applied respectively), stable mode-locking was achieved 

for a broad range of current and reverse voltage conditions. The light-current 

characteristics of the tapered lasers with 5 and 10 QD layers were measured at room 

temperature, and are shown in Figure 8.3.  The highest output power exceeds   890 

mW at 1800 mA, with a threshold current of 179 mA for a 5-layer QD structure under 

uniform current injection into both the gain and absorber sections. The slope efficiency 

of about 0.6 W/A with a lasing wavelength of ~1252 nm can be obtained.  

 

 

Fig. 8.3 Light-current (L-I) characteristics for fully connected 5-layer and 10-layer quantum dot 

devices. Upper left inset: L-I characteristics obtained for an applied absorber bias of -4 V.  

Lower right inset: dependence between the threshold current and the absorber bias. 

 

On the contrary, the 10-layer QD laser has slightly lower output power (822 mW at 

1830 mA) and larger threshold current (211 mA) under uniform injection. The range of 



193 
 

driving conditions over which stable mode-locking occurs at -4 V reverse bias for the 5-

layer QD laser is illustrated in the upper left inset of Figure 8.3. The slope efficiency is 

estimated at 0.55 W/A with lasing wavelength located at ~1260 nm. We would like to 

point out that the difference in emission wavelength between the 5- and the 10-layer 

tapered lasers is not due to temperature variations, as the same bias conditions were 

applied and the same Peltier cooler was used to stabilise the operating temperature of  

both lasers. The most probable causes for this difference could be the result of a QD 

structure discrepancy. In fact, as is well known, an increase in QD size can lead to 

slightly red-shift of the QD transition wavelength, whereas a minute increase of In 

content in the capping layer of InGaAs may also produce a red-shift of QD transition 

wavelength.  

The occurrence of stable mode-locking was examined as a function of the bias 

conditions – as represented in Figure 8.4, the 10-layer QD laser showed a wider mode-

locking region compared to the 5-layer QD laser.  For the 10-layer QD laser a narrow 

region of an unstable mode-locking regime was observed. In this regime, a 

combination of fundamental and harmonic mode-locking was observed, as was 

evident in the RF spectra and in the autocorrelation measurements. For the 5 QD-layer 

laser, the pulse duration and average power were measured as a function of an 

applied gain current, for a reverse bias of -4 V, as shown in Figure 8.5. A maximum high 

average power of 209 mW corresponding to 14.2 pJ pulse energy with 6-ps pulse 

duration is observed at -4 V reverse bias and 1 A current for this tapered laser.  

The spatial beam characteristics of the 10-layer quantum-dot laser were also 

investigated in great detail. Far field and near field in the slow axis have been 

measured with a rotating photodiode and a vidicon camera. The fully gain-guided 

structure allows obtaining a stable far field with a low divergence. Indeed, under 
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uniform injection (Figure 8.6 a), the far field full width at half maximum (FWHM) varies 

from 1.7° to 1.1° when the current increases from 400 mA up to 800 mA. The 

corresponding far-field FWHM values at 1/e2 vary from 3.4° to 2.6°, and the near field 

ones from 28 µm to 65 µm. Single-lateral mode with a low divergence was therefore 

achieved with the beam quality parameter M2 varies between 1.1 and 1.4. The method 

of measuring M2 at 1/e2 that was used here is fast and easy one but it doesn’t take all 

the beam profile into account. According to the International Standards Organization 

(ISO 11146) M2 should be defined through the hyperbolic curve of real beam which is 

time consuming but gives more accurate value of M2. 

 

Fig. 8.4 Mapping of mode-locking regimes observed for (a) the 5-layer quantum dot laser, (b) 

the 10 layer quantum dot laser. 

 

 

 

 

 

Fig. 8.5 (a) Pulse duration and (b) average power dynamics at a reverse bias -4 V for 

the 5-layer quantum dot laser. 
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Far field FWHM and M2 remain below 2.7°and 3 respectively, for currents less than   

1.2 A. Under -4 V reverse bias on the absorber section (Fig.8.6 b), the FWHM varies 

between 1.3° and 1.8°, while the 1/e2 values range between 2.3° and 3.6°. The M2 

varies between 1.1 and 1.8 [28]. Both tapered lasers - with either 5 or 10 layers of 

quantum dots - have demonstrated high peak power pulse generation. The highest 

peak power of 3.6 W is measured for a driving current of 950 mA (1044 mA) and 5.1 V 

(4.9 V) reverse bias for 5 (10) layers lasers respectively. The corresponding 

autocorrelation, RF and optical spectra are shown in Figure 8.7 and Figure 8.8. 

Gaussian shapes have been assumed to calculate the pulse width. The combination of 

a pulse duration of 3.2 ps (3.3 ps), and an optical spectrum FWHM of 7.3 nm (8.4 nm) 

results in a time-bandwidth product (TBWP) of 4.4 (5.2) measured from the 5- and 10-

layer devices accordingly. 

 

 

 

 

Fig. 8.6 Far-fields (a) under uniform injection and (b) under -4 V reverse bias on the absorber 

section for the 5-layer quantum dot laser (characterized by III-V Lab, France). 

The generated pulse is therefore not transform-limited, which opens the possibility 

for significant pulse post-compression, which allows the potential to boost the peak 

power up to ~20 W by theoretical estimation. Further investigation work presented in 

next section was pursued by fabricating lasers with a smaller gain-to-absorber length 
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ratio, for instance from 6:1 (as in the present work) to 4:1, in order to generate shorter 

pulses as described in ref. [24].  

 

Fig. 8.7 (a) Autocorrelation, (b) RF spectrum and (c) optical spectrum for an injection current of 

950 mA and reverse bias of 5.1 V at a high peak power regime in the 5-layer quantum dot 

laser. 

 

Fig. 8.8 (a) Autocorrelation, (b) RF spectrum and (c) optical spectrum for an injection current of 

1044 mA and reverse bias of 4.9 V at high peak power regime in the 10-layer quantum dot 

laser. 
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8.2.3 Conclusion. 

Novel tapered quantum-dot lasers with a gain-guided geometry operating in a 

passively mode-locked regime have been fabricated and investigated, using structures 

that incorporated either 5 or 10 QD layers. The generation of picosecond pulses with 

high average power of up to 209 mW was demonstrated, corresponding to 14.2 pJ 

pulse energy. A low slow axis far-field was demonstrated, which remains stable even 

under a high-current injection. Furthermore, a highest peak power of 3.6 W is achieved 

for a tapered quantum-dot laser (corresponding to a pulse duration of 3.2 ps), with a  

time-bandwidth product that offers the potential of further pulse post-compression 

for boosting the peak power up to 10 times – and thus forming the basis of an 

extremely compact ultrafast laser system. 
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8.3 Second iteration of tapered lasers. 

8.3.1 Introduction. 

It was previously shown that a reduction of the pulse duration from 2.3 ps to 800 fs  

can be achieved by changing the absorber-to-gain length ratio from 14:1 to 3:1 in 

straight QD waveguide lasers [29] and a similar approach has been successfully 

undertaken for two-section QD mode-locked index-guided tapered lasers [23-24]. A 

great improvement in output average power and peak power was shown in the 

previous section [25]. 

In this section, the generation of 6 ps pulses with a high average power of 209 mW 

corresponding to pulse energy of 14.2 pJ was achieved.  Furthermore, by using an 

absorber-to-gain length ratio of 1:6, a high peak power of 3.6 W was directly 

generated from monolithic tapered fully gain-guided 5-layer and 10-layer quantum-dot 

lasers with optical pulses of 3.2 ps and 3.3 ps, respectively [25]. Here the record-high 

17.7 W peak power is reported from monolithic two-section quantum-dot tapered 

laser with 1.26 ps pulse duration. A high average power of 287.7 mW with 2.2 ps 

pulses, corresponding to 28.7 pJ pulse energy is achieved. Phase noise and integration 

timing jitter of 2.6 ps is also demonstrated. Moreover, the generation of ultrashort 

Fourier-limited 672 fs pulses width with peak power of 3.4 W was achieved with 

another optimized structure where the absorber-to-gain length ratio was 5:1 [30]. 
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8.3.2 Optimized fully gain-guided tapered lasers. 

The QD wafer was grown on a n+-GaAs substrate by Molecular Beam Epitaxy (MBE), 

incorporating 10 identical layers of undoped InAs QDs separated by 35 nm GaAs 

barriers, which are used for eliminating high strain accumulation in each QD layer, and 

integrated in an AlGaAs waveguide. The investigated fully gain-guided tapered lasers 

were processed by III-V Lab the same way as the first iteration consisting of two 

separate and electrically-insulated sections: a narrow straight section near the back 

facet, which acts as a cavity spatial filter, extended by a tapered part which acts as an 

amplifier. Proton implantation has been performed outside the electrode area to 

achieve lateral gain guiding and to improve the electrical isolation between the two 

sections, resulting in fully gain-guided two-section geometry. For mode-locked 

operation, a reverse bias and forward current are applied to the straight and tapered 

sections, which act as saturable absorber (SA) and gain sections, respectively. The two 

lasers with different designs are denoted with A and B characterized at the Technical 

University of Darmstadt and the University of Dundee, respectively.  The lengths of the 

straight and tapered sections are 0.4 mm (0.8 mm) and 2.14 mm (3.2 mm) for device A 

(B), respectively resulting in a total cavity length of 2.54 mm (4.00 mm), thus 

corresponding to a repetition rate of 16 GHz (10 GHz). The full taper angle was 2⁰ for 

both devices with linear flares from 14 µm (14 µm) to 88 µm (124 µm). A schematic of 

the tapered fully gain-guided laser was presented previously in Fig. 8.2. Anti- 

(TiO2/SiO2) and high-reflective (Al2O3/Si)*3 coatings of 3 % and 95 % were deposited on 

the front/back facets respectively. The lasers were mounted on a Peltier cooler to 

maintain the operating temperature of 20 ⁰C. The central emission wavelength was 

around 1260 nm. The described designs have been derived from numerical simulations 
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[31-33] of the mode-locking regimes and their dependence on the particular structure 

layout. In the following section, a brief description of the major findings from the 

design procedure is outlined. 
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8.3.3 Simulation results. 

The design of the optimized structures was obtained by performing preliminary 

beam propagation method simulations to verify the adiabatic transformation of the 

field in the tapered gain section, and by subsequently investigating the mode-locking 

regimes via both a delayed differential equation (DDE) numerical model [31] and a 

one-dimensional time-domain travelling-wave (TDTW) model [32], phenomenologically 

including the effect of the tapered gain section through a dependence of the active 

region volume and transverse field profile on the longitudinal position of the cavity.  

Starting from the experimental results presented in section 8.2 [25], the possibility 

to further optimize the gain guided device was investigated at the Politecnico di 

Torino, Italy. 

Tapered long cavities lasers operating in CW regime have shown the ability to 

generate a high output power [8-10]. However, in the mode-locking regime tapered 

long cavity lasers are exhibiting a large leading edge instability with increasing current 

induced by the spontaneous emission noise as dynamic simulations show in [34], 

resulting in low average and peak power from the devices. In order to overcome this 

obstacle, two different approaches have been therefore implemented:  

I. A short cavity length (2.5 mm) is used with respect to the devices described in 

previous section (8.2) [25] but with the absorber-to-gain length ratio changed from 1:6 

to 1:5. The simulations showed the possibility of generating shorter pulses from mode-

locked lasers as already pointed out in [24]. The interplay between pulse shortening 

and pulse broadening mechanisms takes place within the device. Due to the small 

available density of states in the gain, the differential gain in the absorber is higher. 

The ratio between the differential gain in the absorber and gain is increased due to the 
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discrete nature of DOS as described in chapter 2. The increased absorber-to-gain 

length ratio enhances the losses in the absorber; this ensures a very small differential 

gain that highly reduces the gain saturation due to total carrier density depletion. In 

addition, the larger area of the tapered section with full angle of 2° was considered 

allowing a further increase in the gain saturation energy [24]. In this condition, gain 

saturation balancing the absorption bleaching in the SA is mainly due to spectral hole 

burning non-linearities enabling the generation of ultrashort mode-locked pulses.  

II.A device with higher than in [25] total length (4 mm) and with highly enhanced the 

absorber-to-gain length ratio in order to avoid the onset of large leading edge 

instabilities with increasing current is considered. The simulations identified the ratio 

1:4 as the optimum ratio. Furthermore the same full angle of 2° characterizing the 

tapered gain section was considered. As shown in Fig. 8.9 and Fig. 8.10, changing the 

absorber-to-gain length ratio from 1:6 [25] to 1:4 allows the full Elimination of the 

onset of leading edge instabilities in the ML regime, enabling large average power and, 

as for the case I, to significantly shorten the achieved mode-locked pulses. In addition, 

the reduced pulse repetition rate also contributes to the achievement of higher energy 

pulses. 
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(a) (b) (c) 

Fig. 8.9 Simulated pulse width (a), average power (b) and peak power (c) as a function of 
the SA voltage and current above threshold I-Ith, for a 4 mm device with a 2° full angle tapered 
gain section and 17% SA section to gain section length ratio. Shaded region highlights unstable 
ML due to large leading edge (LE) instability (performed by the Politecnico di Torino, Italy). 

(a) (b) (c) 

Fig. 8.10 Pulse width (a), average power (b) and peak power (c) as a function of the SA 
voltage and current above threshold I-Ith, for a 4 mm device with 2° full angle tapered gain 
section and 25% SA section to gain section length ratio. No leading edge instability to 
spontaneous emission noise perturbations has been observed in the investigated range of bias 
parameters (performed by the Politecnico di Torino, Italy). 
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8.3.4 Experiments and Discussion. 

Pulse measurements were carried out with an autocorrelator using second 

harmonic generation. Optical and RF spectra were recorded by respective analyzers. 

The experimental setup is shown in Fig. 8.11.  

 

Fig. 8.11 Dynamic characterization experimental setup: QD -TSD: quantum dot - two section 

diode, A- absorber section, G: gain section, TC: temperature controller, L: lens, OI: optical 

isolator, HWP: half wave plate, SMF: single-mode fiber, FS: fiber splitter, OSA: optical spectrum 

analyzer; PC: personal computer; Autoco: autocorrelator; Osc: oscilloscope; PD: photo 

detector; RFSA: RF spectrum analyzer. 

It was identified that the optimum reverse voltage for generation of the shortest 

pulses in the mode locking regime for device A is -6.0 V. A region of mode locking was 

from 570 mA to 625 mA and from 675 mA to 720 mA. Below 570 mA incomplete 

mode-locking occurs, above 720 mA strong modulation at a frequency of 560 MHz is 

existent and in the intermediate non mode-locking region a progressive repetition rate 

transition takes place [35].  The light-current characteristic at -6.0 V reverse bias is 

shown in Fig. 8.12. The lasing threshold amounts to 500 mA at -6.0 V and the total 

output power at a gain current of 720 mA amounts to 72 mW. This current 

corresponds to the upper border of the ML regime and thus provides the highest 

average power. Mode locking starts at 570 mA which is close to lasing threshold. The 

shortest pulse width of 672 fs is observed at 570 mA and the corresponding pulse trace 
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is depicted in Fig. 8.13. The calculated time-bandwidth-product amounts to 0.35 using 

a sech² fit for the autocorrelation. 
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Fig.8.12 Light current characteristic for device A at a reverse bias of -6.0V. The shortest pulses 

are obtained at 570 mA and the highest peak power at 695 mA (Characterized at Technical 

University of Darmstadt, Germany). 
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Fig. 8.13 Autocorrelation signal of the shortest pulse width of laser A; inset left: an optical 

spectrum; inset right: RF spectrum at a gain current of 570 mA and reverse bias of -6.0 V. Sech2 

fit. (Characterized at Technical University of Darmstadt, Germany). 

Within the complete mode-locking regime a time-bandwidth product below 0.77 is 

measured and from 570 mA to 600 mA Fourier-limited pulses are obtained. The 

influence of the gain current on the pulse width is shown in Fig. 8.14. The pulse width 

increases from 672 fs at 570 mA to 938 fs at 720 mA.  
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Fig. 8.14 Pulse width in dependence of a gain current of laser A at a reverse bias of -6.0 V 

(Characterized at Technical University of Darmstadt, Germany). 

The peak power from the measured pulse width, average power and the repetition 

rate were estimated. The peak power evolution in dependence of gain current is 

depicted in Fig. 8.15. Peak power increases from 3.8 W at 570 mA to 4.78 W at 720 mA 

with a maximum peak power of 5.48 W together with a pulse width of 757 fs at a gain 

current of 695 mA. This achieved peak power is the highest reported peak power for a 

tapered gain-guided mode-locked quantum-dot two-section laser with repetition rate 

of 16 GHz.  
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Fig. 8.15 Dependence of peak power as a function of a gain current of laser A at a reverse bias 

of -6.0 V (Characterized at Technical University of Darmstadt, Germany). 
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The measurements of the far field pattern on device A presented in Fig. 8.16 are 

performed by III-V Lab at 575 mA and 675 mA currents. We observe the single mode 

behaviour together with a very low full width of 2.4° and 3.1° at 1/e² of maximum 

respectively. M² values are 1.3 and 1.7, for the gain current values of 575 mA and 675 

mA, respectively (reverse bias of -6 V). 

 

  

Fig. 8.16 Far field slow-axis pattern measured on device A at 575 mA and 675 mA with a very 

low full width of 2.4° and 3.1° at 1/e² of maximum respectively (characterized by III-V Lab, 

France). 

As indicated by numerical simulations, an alternative way to even further increase 

peak power is by increasing the overall laser length and the absorber-to-gain-length-

ratio as realized in device B where stable mode-locking was achieved for reverse bias 

between 3V and 6 V applied to the absorber and gain current between 800 mA and 

1800 mA.. Indeed, the optimum mode locking regime for device B is found at a reverse 

bias of -4.0 V, attributed to the change in absorber-to-gain-length-ratio. In analogy to 

Fig. 8.12 the average power dependence of gain current under uniform injection and 

under an applied reverse bias of -4.0 V are shown in Fig. 8.17 a, b. Under uniform 
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injection a threshold current of 341 mA and differential efficiency of 0.38 W/A were 

observed. When a reverse bias of -4 V is applied on the absorber, laser emission takes 

place at 720 mA with a hysteresis loop. A self starting mode-locking regime was 

observed from current of 830 mA up to 1.7 A. Compared to laser A, the threshold is 

shifted from 500 mA to 720 mA and the start of the mode locking region is shifted 

from 575 mA to 830 mA. Both changes confirm our assumption of the determining 

influence of the ratio of gain-to-absorber lengths. The maximum output average power 

achieved was 287.7 mW, for a reverse bias of -4 V and current 1.8 A at 20 ⁰C, 

corresponding to 28.7 pJ pulse energy with2.2 ps pulse duration (Fig. 8.17 b). 

 

 

 

 

Fig. 8.17 a, b Light-current curves for a laser B at 20⁰ C (a) under uniform injection (red line) 

with a threshold current of 341 mA and (b) under an applied voltage of -4 V on the absorber 

section (black line) with a 720 mA threshold current. 

 

This corresponds to an increase in average power by a factor of 4.5 as compared to 

laser A as reflected directly as one contribution to the peak power.  Pulse duration 

increases from 820 fs to 2.2 ps with increasing current and is only slightly higher than 
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compared to the pulse observed with laser A, as shown in Fig.8.18 a. Peak power varies 

between 9 W and 17.7 W depending on the bias conditions (Fig. 8.18 b). 

 

 

 

 

Fig. 8.18 (a) Pulse duration and (b) peak power dynamics at a -4 V reverse bias for a quantum-

dot tapered laser B. 

 

The shortest pulse width of 820 fs for a reverse bias of -4 V and injected current of 1 

A was obtained associated at the same time with high peak power of 15 W and a high 

average power of 123 mW and, which is made possible due to the increasing length of 

the tapered section and the reduction of the repetition rate by a factor of 0.62 (Fig 

8.19 a, b). The optical spectrum was centred at 1259.5 nm with a full-width 

half-maximum of 5.36 nm, resulting in a time-bandwidth product of 0.83. 

 

Fig. 8.19 (a) Autocorrelation (Inset:  RF spectrum); (b) optical spectrum for an injection current 

of 1 A and reverse bias of -4 V for a short pulse regime for quantum-dot tapered laser B. 
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 A record-high peak power of 17.7 W with 1.26 ps pulse duration and 222.7 mW 

average power was attained for -4 V and 1.5 A bias condition (Fig. 8.20 a, b). This 

represents the highest reported peak power to be generated from mode-locked 

monolithic semiconductor lasers. It is noteworthy to mention that the central 

wavelength suffered a nearly negligible shift to 1260.4 nm for such a high current of 

1.5 A (resulting in current density of only 671 A/cm2), suggesting that the band filling 

effect is quite weak for this device. The full-width at half-maximum of the optical 

spectrum was 5.6 nm, resulting in a time-bandwidth product of 1.33. Mode-locking 

was also observed for reverse bias between -2 V and -6 V. 

 

 

 

 

Fig.8.20 (a) Autocorrelation (Inset: RF spectrum); (b) optical spectrum for an injection current 

of 1.5 A and reverse bias of -4 V for a record-high peak power regime for quantum-dot tapered 

laser B. 

Compared to the already significant peak power achieved by laser A, we have 

furthermore successfully improved the peak power by a factor of 3.8 to record values 

by a combined increase of the total laser length by a factor of 1.6 and the absorber-to-

gain-ratio by a factor of 1.25.  

Lorentzian-shaped autocorrelation for laser B compared to sech2 autocorrelation 

for laser A were observed. It can be explained by different design and proportions of 

absorption and gain sections of the lasers which lead to different mode-locking 
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dynamics regions and generate pulses with different characteristics. Pulses generated 

by QD mode-locked lasers may display a slower falling edge that translates into a 

Lorentzian-shaped autocorrelation. 

The far field pattern was also measured on device B at 1 A (the shortest pulse 

regime) and 1.5 A (the highest peak power regime) by III-V Lab. A single mode 

behaviour was exhibited at 1.5 A with very low full width of 2.2° at 1/e² of maximum. 

We also observed two lobes behaviour at 1 A and full width of 3.3° at 1/e² of maximum 

which corresponds to single high-order lateral mode (Fig.8.21). M² values are 2.9 and 

2.1 at gain current of 1 A and 1.5 A at bias of -4 V respectively.  

  

Fig. 8.21 Shows far field slow-axis pattern measured on device B at 1 A (shortest pulse width) 

and 1.5 A (highest peak power) with a very low full width of 3.3°and 2.2° at 1/e² of maximum, 

respectively (characterized by III-V Lab, France). 

 

Phase noise measurements show that the integrated timing jitter for laser B can be 

as low as 2.6 ps (from 10 Hz to 50 MHz) at 14 ⁰C (Fig. 8.22). This result shows that 

mode-locked QD two-section gain-guided tapered lasers are not only useful for the 
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generation of ultrashort pulses with high peak power, but they are also promising as 

sources for low noise applications. 
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Fig. 8.22 A phase noise and integrated timing jitter for an injection current of 955 mA and 

reverse bias of -4.17 V at 14˚C for laser B. 
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8.3.5 Conclusion. 

Passively mode-locked quantum-dot gain-guided tapered lasers with different 

structural parameters have been simulated, fabricated and investigated. Optimized 

structure designs were obtained by numerical simulations and the experimental 

findings fully confirm the trends identified by the modelling activity. Record high peak 

power and sub-picosecond Fourier-limited pulse generation has been demonstrated by 

two novel passively mode-locked fully gain-guided two-section quantum dot lasers 

with tapered gain sections. A peak power of 17.7 W with a pulse width of 1.26 ps and 

peak power of 3.8 W with a Fourier-limited pulse width of 672 fs is achieved by a 

proper choice of active region and laser structure geometry including absorber-to-gain 

ratio and total laser length. Quantum-dot tapered gain-guided lasers have therefore 

shown promising results as high power ultra-fast and ultra-compact semiconductor-

based laser sources.  
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8.4 Multiphoton imaging using tapered lasers. 

8.4.1 Introduction. 

As described in section 1.3 multiphoton imaging is possible when the product of 

average power and peak power (see Eq.1.2) called the figure of merit (FOM) is high 

enough in order to produce high fluorescent intensity from the biological sample [1, 

36-38].  QD based mode-locked tapered lasers have shown their potential producing 

high peak power and average power (see previous sections). In this context, tapered 

lasers are used for two-photon microscopy of biological sample – fluorescent beads. 
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8.4.2 Experimental setup.  

Two experiments were performed using monolithic QD tapered lasers which were 

characterized prior to these experiments using the setup depicted in Fig. 8.11. The 

schematic for nonlinear imaging experiments is shown in Fig. 8.23 similar to the one in 

ref. [19] where there are not galvanometric mirrors and instead semiconductor disk 

laser tapered lasers are used which were mounted p-side up on the Peltier cooler to 

maintain operating temperature at 20 ⁰C. The laser beam is coupled using aspheric 

lenses with NA of 0.55 and mirrors to the microscope. During the first experiment the 

microscope setup included the incorporation of a linear imaging system on the existing 

nonlinear microscope (NLM) platform (based on a continuous wave HeNe laser 

operating around 633 nm). This alternative system was mounted as this enabled 

excitation of different samples in a linear approach using the same samples to be 

tested with the QD laser diode described in 8.2. As tapered lasers exhibited higher 

peak power (described in 8.3) the second experiment was performed. In addition, 

several modifications were performed to the microscopy work station (i.e. beam path 

optimization).  

 

Fig. 8.23 Experimental setup using a tapered laser and nonlinear microscope. 
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As the major loss of power occurs in the microscope objective a new 60 x Nikon oil 

immersion Lambda-S microscope objective optimized for IR wavelengths with NA of 

1.4 was used. This objective has a new coating design [39], allowing an increased 

transmission in for NIR wavelengths. This transmission goes from 15 % in the old 

objectives to 30 % in the Lambda-S series objectives. The sample was scanned in x-y 

directions using a translation stage (Tango, Marzhauser Wetzlar). To acquire the two 

photon excited fluorescence image a band pass filter (KG3, schott) was placed in front 

of a photomultiplier tube (Hamamatsu, H9305-03). 
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8.4.3 Experiments and Discussion. 

The experiments were done in collaboration with The Institute of Photonic Sciences, 

Barcelona, Spain. The first tapered QD laser diode, operating at a central wavelength 

of 1260 nm, average output power of 200 mW, 3.6 W peak power and 14.6 GHz 

repetition and pulse duration of 3 ps was tested (described in section 8.2) . The 

recorded average power after such lens was 135 mW because the beam had a lot of 

astigmatism. However, the system was incorporated to our setup optimizing the path 

towards the microscope. For these tests we used 15 µm crimson fluorescent beads 

(designed to be excited using around 630 nm in linear fashion meaning that the sample 

is suitable for nonlinear excitation at 1260 nm ), starch granules (as the laser has an 

increased repetition rate) and several laser bias conditions for the absorption and gain 

sections previously characterized at Dundee. During these tests the average power 

reaching the sample plane was 20 mW corresponding to a peak power of 0.48 W. In 

this case, we could not observe any nonlinear signal coming from the sample. At the 

Institute of Photonics sciences it was experimentally found that, if the maximum peak 

of two photon action cross section of any dye is well matched, the required threshold 

peak powers to excite such dyes in a nonlinear fashion would be around ten’s of watts 

(peak power). Therefore we were not able to see any nonlinear signal emitted from 

the test sample.  

For the next imaging trials after optimization of the nonlinear microscope system, 

the laser was similar to device B described in section 8.3 but with slightly lower 

average power of 100 mW. The pulse duration was about 1 ps and taking into account 

a repetition rate of 10 GHz, the peak power results in ~10 W. In this case the peak 

power of the laser system has been up scaled considerably, thus being able to deliver a 



218 
 

couple of watts into the sample plane. Based on previous experience such output 

power could be around the threshold value to start observing a NL emission. As 

before, fluorescent bead samples (suitable for NL excitation at 1260 nm) were used. 

Figure 8.24 shows the image obtained from the fluorescent beads sample. it is possible 

to observe the result from integrating 10 frames from the same sample region. This 

procedure was performed to increase the signal to noise ratio (SNR). However it can be 

clearly observed that individual spheres cannot be visualized correctly. In fact this 

effect can be attributed to the beam profile which suffers from astigmatism.  

 

 

Fig. 8.24 A two-photon image of fluorescent beads using QD tapered laser B. 

 

This was left without correcting the beam profile, as the lenses used to partially 

correct for this effect generate additional losses on our setup. Nevertheless, if higher 

peak power is available, such a correction would allow the concentration of light more 

efficiently before coupling the beam into the microscope objective. This is the scope of 

the future work.  
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8.4.4 Conclusion.  

Thus it is for the first time QD based compact monolithic device enables the imaging 

of biological material using two-photon microscopy imaging technique. Successful 

demonstration of application of tapered QD based laser in biophotonics field was 

presented. It once again suggests that semiconductor lasers exhibit great potential in 

replacing bulk and expensive solid state systems which are used now for multi-photon 

imaging. 
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8.5 Summary. 

QD based monolithic tapered laser was developed and investigated. A unique gain-

guided design allows achieving picoseconds pulses with average power of more than 

200 mW. For further improvement of the device, characteristics were obtained after 

second iteration of the tapered lasers with optimized structural characteristics based 

on simulation results. The record peak power of 17.7 W and transform limited pulses 

of 672 fs were achieved. Such phenomenal results enabled the use of tapered lasers 

for two-photon microscopy. The image of fluorescent beads was presented. Thus 

tapered QD lasers open new doors for next generation optical sources which can be 

effectively used in biophotonics area.     
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Chapter 9. Conclusions. 

9.1 Summary of the work. 

In this thesis QD-based semiconductor lasers were studied with monolithic and 

external cavity configurations for generating ultrashort pulses. The influence of the 

cavity length and number of QD layers in the active region was analyzed. Two  

millimetre lasers with different numbers of QD layers in the active region were 

characterized thoroughly. It was found that QD based lasers with 10 layers of QD 

exhibit the most promising results: a 1 ps pulse duration and peak power of 600 mW. 

In this context, 5 layer QD lasers are more favourable for dual mode mode-locking. 

Simultaneous emission from ground and excited states with 83 nm spectral separation 

was shown which can be used for CARS and STED modalities [1].  As the cavity length 

decreased to 1.3 mm excited states emission takes place more easily due to the 

ground state saturation. Thus structural parameters of the laser enable the control of 

its optical characteristics and giving an extra flexibility in developing universal sources 

for time-domain spectroscopy, ultrafast optical processing and multi-photon imaging.  

Bistable devices were developed using the advanced MBE growing technique. The 

highest spectral bistability range, 54 nm, was demonstrated generating picosecond 

pulses for gain currents between 260 mA to 330 mA. In addition, the wavelength 

tunability region of 45 nm was observed from 1245 nm to 1295 nm electronically 

controlled by reverse bias to the absorber [2]. These are very important results for 

optical communication applications as the spectral range is within the minimum fibre 

dispersion region. 

External cavity QD lasers were investigated as well [3-6]. Peak power of up to 1.5 W 

with a repetition rate of 1.14 GHz, without the use of any pulse compression and 
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optical amplification, was achieved. Fundamental frequency tuning from 1 GHz to a 

record-low value of 191 MHz was demonstrated. Furthermore, a very broad harmonic 

repetition rate tunable range with picosecond pulses up to 6.8 GHz corresponding to 

34thorder harmonic of 200 MHz fundamental frequency was shown. Moreover, a 

record-low -3dB RF linewidth of ~30 Hz from the QD-based external-cavity passively 

mode-locked laser was illustrated for a fundamental frequency of 281.3 MHz, which 

indicates the low noise and high stability operation of this device.  

 Novel gain-guided tapered lasers with 5 and 10 QD layers were realised and 

characterised. Two iterations of the devices were developed. In the first iteration, 

picosecond pulses with an average power of 209 mW were achieved giving the highest 

pulse energy of 14.2 pJ. This is more than one order of magnitude higher than previous 

results [7]. A second iteration of the devices was successfully realized with optimized 

structural characteristics, according to the simulations which were performed at 

Politecnico di Torino (see section 8.3.3).   

The highest peak power ever reported from a monolithic mode-locked 

semiconductor laser of 17.7 W was achieved as well as ultrashort pulses in the range of 

800 fs [8]. The improved optical parameters of the tapered laser enabled the 

achievement of nonlinear images of fluorescent beads (see Fig. 8.24). Thus one of the 

main goals of the thesis was accomplished. A new version of the semiconductor device 

was developed, that was used for multiphoton imaging. This  is only the beginning of a 

new era of QD-based  semiconductor lasers. In Fig. 9.1 the development of QD-based 

lasers presented in this thesis is shown.  The product of the average power and the 

peak power was improved step by step, as can be seen in the table 9.1.  
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Fig. 9.1 A map for a progress of QD-based lasers: MML Laser- monolithic mode-locked laser, 

ECML- external cavity mode-locked laser, Tapered mode-locked (ML) laser toward 

biophotonics. 

Table 9.1 Performance of QD-based devices presented in the thesis. 

Laser Pulse, 
ps 

Rep. 
Rate, GHz 

Configurati
on 

Average 
Power, 

mW 

Peak 
Power, 

W 

Figure of 
Merit 

(FOM), 
W2 

Chapter/Reference 

MML 2.5 20 Monolithic 30 0.6 0.018 5,6/[1-2, 9-10] 

ECML 13.6 1.14 External 23.2 1.5 0.0348 7/[3-5] 

Tapered ML 1 3.2 14.6 Monolithic 190 3.6 0.684 8/[11] 

Tapered ML 2 1.26 10 Monolithic 223 17.7 3.941 8/[8] 
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9.2 Future work.  

Progress in the development of QD-based lasers enabled the achievement of~ 18 W 

peak power with more than 200 mW average power. The next step is to exploit more 

complex systems with several stages of amplification, as was shown in previous reports 

[12-15], in order to satisfy the requirement for more peak power. For example, the 

investigation of the combination of a monolithic laser or an external cavity QD laser 

configuration in combination with a semiconductor optical amplifier (SOA).  

Preliminary results show that a peak power of 32 W can be achieved from mode-

locked external cavity lasers with tapered semiconductor optical amplifiers [16]. 

Another area of interest is THz frequency generation. QD based lasers with volume 

Bragg grating can be used as they have been demonstrated for developing the next-

generation compact THz emission systems [17]. Moreover, dual-wavelength mode-

locking regime needs to be investigated further in order to understand the mechanism 

underlying behind it. Another interesting area of research can be focused on QD lasers 

on different substrates rather than GaAs such as Si and Ge [18-19]. Short-wavelength 

QD lasers can be further investigated and developed, as a shorter wavelength is 

needed for imaging systems [20]. As autocorrelation doesn’t provide information 

about the phase of the pulse, it would be very useful to perform frequency-resolved 

optical gating (FROG) measurements, such as reported in [21-23] for more insight 

understanding of the pulse in QD based lasers. 
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