15 research outputs found

    Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines

    Get PDF
    Objective: To evaluate the antioxidant and antiproliferative effect of methanolic bee pollen extract (BPE) of Malaysian stingless bee [Lepidotrigona terminata (L. terminata)] and its synergistic effect with cisplatin (a chemotherapeutic drug) on MCF-7 cancer cell line. Methods: The antioxidant activity of BPE from L. terminata was measured by using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Antiproliferative activity at different concentrations of BPE and cisplatin was determined through using MTT assay on MCF-7 and L929 cell lines. An interaction effect (synergistic, additive and antagonistic) between BPE and cisplatin was determined by CompuSyn software based on MTT assay data. Results: The EC50 (50% decrement of DPPH inhibition) of BPE was 0.5 mg/mL. L. terminata BPE exhibited antiproliferative activity on both cancer and normal cell lines. The IC50 (concentration of drug that was required for 50% of cell inhibition in vitro) of BPE on MCF-7 was 15 mg/mL whereas in normal cell line L929 was 26 mg/mL. The IC50 for cisplatin on MCF-7 was 20 μmol/L. The combination effect of BPE and cisplatin on MCF-7 cells showed that BPE at 15 mg/mL was able to potentiate the inhibitory effect of cisplatin at all different concentrations (2.5–20.0 mg/mL). The average of cancer cells inhibition which was potentiated by BPE was around 50%. A combination index values of less than 1 reported in the CompuSyn software further proved the synergistic effect between BPE and cisplatin, suggesting that BPE was working synergistically with cisplatin. Conclusions: Our study therefore suggested that BPE of Malaysian stingless bee, L. terminata is a potential chemopreventive agent and can be used as a supplementary treatment for chemotherapy drugs. BPE might be able to be used to potentiate the effect of chemotherapy drugs with the possibility to reduce the required dose of the drugs. The molecular mechanisms of how the BPE exerts antiproliferative activity will be a much interesting area to look for in future studies

    Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples

    Get PDF
    A magnetic molecularly imprinted polymer (Fe3O4@MIP) with naproxen (as template) was successfully prepared by adding a co-solvent consisting of a choline-imidazole based deep eutectic solvent (ChCl-BuIM) during polymerisation. The morphological, functional group, and magnetic characteristics of the synthesised materials were characterised by elemental analysis, Fourier transform-infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. This hybrid Fe3O4@MIP-ChCl-BuIM material was used as a magnetic adsorbent for efficient and selective removal of naproxen from wastewater samples. A batch adsorption study showed that adsorption of naproxen onto the multilayer surface of the adsorbent through a chemisorption mechanism. The data showed that the adsorption was feasible, spontaneous, and exothermic. The Fe3O4@MIP-ChCl-BuIM removed more naproxen (93.2–97.1%) than Fe3O4@MIP without ChCl-BuIM (83.2–88.9%). This finding confirms that the use of ChCl-BuIM improved both the selectivity and affinity of the MIP adsorbent towards naproxen. Competitive recognition studies of the Fe3O4@MIP-ChCl-BuIM using naproxen and structurally similar non-steroidal anti-inflammatory drugs revealed that the Fe3O4@MIP-ChCl-BuIM had high selectivity for naproxen. A cytotoxicity test showed that the synthesised ChCl-BuIM was non-toxic, as the human normal cell lines MCF-10A, and BEAS-2B maintained viability above 50%. These results show that Fe3O4@MIP-ChCl-BuIM has potential for use as a functional adsorption material for the removal of naproxen from water samples

    Inclusion of curcumin in β-cyclodextrins as potential drug delivery system: preparation, characterization and its preliminary cytotoxicity approaches

    Get PDF
    The development and application of organic based drug carrier in drug delivery system (DDSs) with greater efficacy and fewer side effects remains a significant challenge in modern scientific and medical research. The aim of current study was to evaluate the ability of β-cyclodextrin (β-CD) as drug delivery carrier to encapsulate Curcumin (CUR), a promising chemotherapeutic that exhibits low aqueous solubility and poor bioavailability forming inclusion complex by kneading method to enhance its delivery to cancer cells. Different methods and analysis such as Fourier Transform Infrared (FTIR) spectrometer, 1H Nuclear Magnetic Resonance (1H NMR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Thermo-gravimetric Analysis (TGA) were employed to approve the successful formation of the inclusion complex where the aromatic ring of CUR has been encapsulated by the hydrophobic cavity of β-CD. UV absorption indicated that β-CD complex with CUR with an apparent formation constant of 1.09 × 10-8mol-1dm-3. Based on the data obtained by methylthiazole tetrazolium (MTT), β-CD showed that not only did it enhanced Curcumin delivery, but it also improved and promoted the anti-proliferative effect of CUR during the complexation rather than CUR alone on the MCF-7 human breast cancer cells at 24 h incubation period with IC50 lower than that of Curcumin alone. The toxicities of the β-CD-CUR towards MCF-7 cells were also compared to the free tamoxifen, Curcumin and β-CD. This study provides a preliminary toxicity evaluation based on β-CD-CUR inclusion complex as potential delivery system towards the selected cancer cells

    Exploring Clinacanthus nutans leaf different solvent extracts on antiproliferative effects induced metastasis through apoptosis and cell cycle against MCF-7 human breast cancer cell lines

    No full text
    Abstract Background Medicinal herbs in Malaysia like Clinacanthus nutans (CN) traditionally are used in the treatment of various diseases and cancers. The present research was conducted to determine the effects of C. nutans leaf different solvent extracts on the human breast cancer cell lines (MCF-7). The antiproliferative growth and survival effects of dichloromethane CN leaf extracts (CNDCM), as well as the short- and long-term effects through metastasis, apoptosis and cell cycle effects, were observed. The chemical profiles were done to evaluate the properties of the CNDCM. Results The evaluation of GC–MS identified 16 major phytochemical compounds present in this extract with biological activities. Antiproliferative assay used is the SRB assay, which showed the CNDCM induced strong antiproliferative property compared with the other extracts, so its IC50 dose was selected for further testing with value 108 µg/mL at 72 h after exposure on MCF-7 and MCF-10A cell lines. The clonogenic survival effects of CNDCM in various concentrations (31.25, 62.5, 125, 250 and 500 µg/mL) inhibited the ability of MCF-7 cells to form colonies, and the metastasis result was indicated in an image of wound healing assay. Moreover, the CNDCM extract significantly induced apoptosis in all the cell cycle phases. Finally, the experiments with various extract concentrations on normal human breast cell lines showed no antiproliferative effects for all the extracts tested. Conclusion Among all the extracts of CN, the CNDCM extracts demonstrated the highest antiproliferative activity and survival against the MCF-7 cell lines tested

    Synthesis of Bio-Inspired 1,3-Diarylpropene Derivatives via Heck Cross-Coupling and Cytotoxic Evaluation on Breast Cancer Cells

    No full text
    International audienceThe Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2)

    Removal of phthalates in aqueos samples using non-ionic silicone surfactant mediated cloud point extraction via spectrophotometry [Penyingkiran ftalat dalam sampel akues menggunakan teknik pengekstrakan titik awan surfaktan silikon tidak berionik dengan spektrofotometri]

    No full text
    Removal of phthalates in environmental compartments become crucial in recent years due to the growing global concern about the health effects of phthalates. In this study, a greener method based on cloud point extraction procedure was developed for the removal of selected phthalates in environmental samples using non-ionic silicone surfactant (DC193C). The parameters affecting the extraction efficiency, such as the surfactant concentration, salt types, salt concentration, temperature and incubation time were evaluated and optimized. Good linearity with correlation coefficients (R2) in the range of 0.9963 – 0.9988 for all calibration curves was obtained. The proposed method was applied in removing the diethhylhexyl phthalate and dibutyl phthalate in river water samples under optimized conditions with satisfactory recoveries in the range of 82 – 98%. © 2019, Malaysian Society of Analytical Sciences. All rights reserved

    A Bottom-Up Synthesis Approach to Silver Nanoparticles Induces Anti-Proliferative and Apoptotic Activities Against MCF-7, MCF-7/TAMR-1 and MCF-10A Human Breast Cell Lines

    No full text
    A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 &deg;C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5&ndash;30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 &micro;g/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties

    Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities

    Get PDF
    Cynometra cauliflora L., locally known as ‘‘nam-nam” or ‘‘katak puru-puru” in Malaysia is belonging to the Fabaceae family. The tree is native to Malaysia and has been used traditionally as folk medicine. Limited works have been conducted on C. cauliflora regarding its chemical composition. In view of this, the present study aimed to identify the essential oil (EO) composition of the leaf, twig and fruit of C. cauliflora and evaluate their antioxidant, antimicrobial and cytotoxic activities. EOs obtained from different parts of the tree were analyzed using capillary GC and GC/MS. Twenty-six, seventeen and fifty constituents were identified in the leaf, twig and fruit EOs of C. cauliflora. Results demonstrated the dominance of monoterpenes hydrocarbons in the leaf oil and oxygenated monoterpenes in the twig oil. On the contrary, fruit oil was abundant in oxygenated sesquiterpenes. Different chemical profiles were found in different parts of EOs which have contributed to varied biological activities. Twig oil (IC50 37.12 ± 2.84 mg/mL) showed better antioxidant power than the leaf (IC50 207.17 ± 2.95 mg/mL) and fruit oils (IC50 461.88 ± 12.61 mg/mL) in DPPH assay. Additionally, twig oil inhibited an entire range of microorganisms tested with inhibition zones ranging 10.3 ± 0.4 to 29.7 ± 0.4 mm. The twig oil displayed low MIC and MBC values against Staphylococcus aureus (MIC 125.0 mg/mL; MBC 250.0 mg/mL) and MRSA (MIC 125.0 mg/mL; MBC 250.0 mg/mL). In in vitro MTT assay, twig oil showed antiproliferative effects against human breast cancer MCF-7 cells

    Cynometra cauliflora essential oils loaded-chitosan nanoparticles: Evaluations of their antioxidant, antimicrobial and cytotoxic activities

    No full text
    Nanoencapsulation has appeared as an alternative approach to protect the bioactive constituents of essential oils (EOs) and to improve their properties. In this study, Cynometra cauliflora essential oils (CCEOs) were nanoencapsulated in chitosan nanoparticles (CSNPs) using an emulsion-ionic gelation technique. Transmission electron microscopy (TEM) images illustrated a well dispersion and spherical shape of C. cauliflora EOs-loaded chitosan nanoparticles (CCEOs-CSNPs) with an average size of less than 100 nm. In addition to that, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) analyses revealed the success of CCEOs nanoencapsulation. The encapsulation efficiency (EE) was in the range of 38.83% to 44.16% while the loading capacity (LC) reached 32.55% to 33.73%. The antioxidant activity (IC50) of CCEOs-CSNPs was ranged from 21.65 to 259.13 μg/mL when assessed using DPPH radical scavenging assay. CCEOs-CSNPs showed an appreciable antimicrobial effects on diabetic wound microorganisms. Notably, cytotoxic effects against human breast cancer MCF-7 and MDA-MB-231 cells recorded IC50 of 3.72–17.81 μg/mL and 16.24–17.65 μg/mL, respectively, after 72 h treatment. Interestingly, no cytotoxicity against human breast normal MCF-10A cells was observed. Thus, nanoencapsulation using CSNPs could improve the properties of CCEOs in biomedical related applications

    Analytical method development and validation of anticancer agent, 5-fluorouracil, and its metabolites in biological matrices: an updated review

    Get PDF
    5-fluorouracil (5-FU) refers to a fluorinated pyrimidine analogue that has been widely used as an anticancer agent for colon, head, and neck cancers. Detection of 5-FU and its metabolites; 5-fluorouridine and 5-fluoro-2-deoxyuridine in biological samples allows optimization of pharmacotherapy and encourages fundamental investigations of this medication. The development of accurate and reliable sample preparation, as well as analytical methods, is critical to isolate targeted analytes from complex matrices, apart from increasing detection sensitivity of analytes. With that, this paper presents a review of prior studies pertaining to chromatographic and electrophoretic methods that focused on the analysis of 5-FU and its metabolites in biological matrices such as plasma and urine. This paper concentrates on HPLC, GC and CE systems, which are the most commonly used strategies for analytical separation of 5-FU and its metabolites from samples. Detection of these antineoplastic agents at trace level demands highly sensitive and selective analytical methodologies. Application of these analytical techniques to biological matrices is reviewed with a focus on method development strategies, including types of mobile phases and background electrolytes employed in LC and CE systems
    corecore