101 research outputs found

    Post Kyoto Options for Belgium, 2012-2050

    Get PDF
    This report examines possible post-Kyoto options for Belgium. Climate change is coming up again at the top of the policy agenda with the decision of the European Commission to reduce its GHG emissions by 20% by 2020. The analysis is done with the MARKAL/TIMES model, a partial equilibrium model for the energy system. It is a technico-economic model, which assembles in a simple but economic consistent way technological information (conversion-efficiency, investment- and variable costs, emissions, etc.) for the entire energy system. Two CO2 reduction scenarios for Belgium are analysed up to the horizon 2050, with and without the possibility of nuclear and carbon capture technologies. The scenarios analysed show that it is possible to attain very stringent CO2 reductions in Belgium. The welfare cost remains limited in the case of a -22.5% reduction in 2050 compared to 1990. The cost is 0.7% of GDP on an annual base but it can become more expensive and reaches up to 1.3% of GDP on an annual base, when the reduction is -52%. These costs are the costs within the energy system without considering any potential side benefits (reduction of other air pollutants and energy security) and assuming a CO2 tax or a permit system as policy instrument for achieving the CO2 reduction target, i.e. an efficient instrument.climate change, energy system modelling, post-Kyoto

    Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control

    Get PDF
    Electric vehicles with independently controlled drivetrains allow torque vectoring, which enhances active safety and handling qualities. This article proposes an approach for the concurrent control of yaw rate and sideslip angle based on a single-input single-output (SISO) yaw rate controller. With the SISO formulation, the reference yaw rate is first defined according to the vehicle handling requirements and is then corrected based on the actual sideslip angle. The sideslip angle contribution guarantees a prompt corrective action in critical situations such as incipient vehicle oversteer during limit cornering in low tire-road friction conditions. A design methodology in the frequency domain is discussed, including stability analysis based on the theory of switched linear systems. The performance of the control structure is assessed via: 1) phase-plane plots obtained with a nonlinear vehicle model; 2) simulations with an experimentally validated model, including multiple feedback control structures; and 3) experimental tests on an electric vehicle demonstrator along step steer maneuvers with purposely induced and controlled vehicle drift. Results show that the SISO controller allows constraining the sideslip angle within the predetermined thresholds and yields tire-road friction adaptation with all the considered feedback controllers

    Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization

    Get PDF
    Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction, no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions, which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM, which include limited biomass potential, low Power-to-Liquid performance, use of PtM waste heat, among others, can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale

    Towards net-zero emissions in the EU energy system by 2050

    Get PDF
    This report presents a comparison of 8 scenarios achieving more than 50% reduction of greenhouse gas emissions by 2030 compared to 1990, and 16 scenarios aiming at climate neutrality by 2050, similar with the ambitions of the “European Green Deal”. This report summarises insights into similar and diverging elements of the scenarios on how the EU energy system may change by 2030 and by 2050, compared to today. The wealth of information, stemming from how different organisations see the EU energy system to evolve within their own scenario context, can provide useful input to EU climate and energy strategies.JRC.C.7-Knowledge for the Energy Unio

    Best evidence rehabilitation for chronic pain, part 3 : low back pain

    Get PDF
    Chronic Low Back Pain (CLBP) is a major and highly prevalent health problem. Given the high number of papers available, clinicians might be overwhelmed by the evidence on CLBP management. Taking into account the scale and costs of CLBP, it is imperative that healthcare professionals have access to up-to-date, evidence-based information to assist them in treatment decision-making. Therefore, this paper provides a state-of-the-art overview of the best evidence non-invasive rehabilitation for CLBP. Taking together up-to-date evidence from systematic reviews, meta-analysis and available treatment guidelines, most physically inactive therapies should not be considered for CLBP management, except for pain neuroscience education and spinal manipulative therapy if combined with exercise therapy, with or without psychological therapy. Regarding active therapy, back schools, sensory discrimination training, proprioceptive exercises, and sling exercises should not be considered due to low-quality and/or conflicting evidence. Exercise interventions on the other hand are recommended, but while all exercise modalities appear effective compared to minimal/passive/conservative/no intervention, there is no evidence that some specific types of exercises are superior to others. Therefore, we recommend choosing exercises in line with the patient's preferences and abilities. When exercise interventions are combined with a psychological component, effects are better and maintain longer over time

    Energy-efficient torque-vectoring control of electric vehicles with multiple drivetrains

    Get PDF
    The safety benefits of torque-vectoring control of electric vehicles with multiple drivetrains are well known and extensively discussed in the literature. Also, several authors analyze wheel torque control allocation algorithms for reducing the energy consumption while obtaining the wheel torque demand and reference yaw moment specified by the higher layer of a torque-vectoring controller. Based on a set of novel experimental results, this study demonstrates that further significant energy consumption reductions can be achieved through the appropriate tuning of the reference understeer characteristics. The effects of drivetrain power losses and tire slip power losses are discussed for the case of identical drivetrains at the four vehicle corners. Easily implementable yet effective rule-based algorithms are presented for the set-up of the energy-efficient reference yaw rate, feedforward yaw moment and wheel torque distribution of the torque-vectoring controller

    The effect of the front-to-rear wheel torque distribution on vehicle handling: an experimental assessment

    Get PDF
    The front-to-rear wheel torque distribution influences vehicle handling and, ultimately, affects key factors such as vehicle safety and performance. At a glance, as part of the available tire-road friction is used for traction on the driven axle, a Front-Wheel-Drive (FWD) vehicle would be expected to be more understeering than a Rear-Wheel-Drive (RWD) vehicle with equivalent characteristics. However, in specific conditions such effect may be counter-balanced, or even reversed, by the yaw moment caused by the lateral contribution, in the vehicle reference system, of the traction forces at the front wheels. This paper discusses the experimental assessment of the phenomenon in steady-state cornering, for a fully electric vehicle with multiple motors, allowing different front-to-rear wheel torque distributions. The results confirm that the yaw moment effect of the front traction forces is significant, especially at low vehicle speeds and high lateral accelerations. In particular, in the case study maneuvers, the RWD configuration of the vehicle resulted more understeering than the FWD one at the speed of 30 km/h

    Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization

    Get PDF
    Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction, no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions, which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM, which include limited biomass potential, low Power-to-Liquid performance, use of PtM waste heat, among others, can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale

    Addressing flexibility in energy system models

    Get PDF
    The present report summarises the discussions and conclusions of the international workshop on "Addressing flexibility in energy system models" held on December 4 and 5 2014 at the premises of the JRC Institute for Energy and Transport in Petten. Around 40 energy modelling experts and researchers from universities, research centres, the power industry, international organisations, and the European Commission (DGs ENER and JRC) met to present and discuss their views on the modelling of flexibility issues, the linkage of energy system models and sector-detailed energy models, the integration of high shares of variable renewable energy sources, and the representation of flexibility needs in power system models. The discussions took into account modelling and data-related methodological aspects, with their limitations and uncertainties, as well as possible alternatives to be implemented within energy system models.JRC.F.6-Energy Technology Policy Outloo
    corecore