44 research outputs found

    Efficacy and safety of daratumumab combined with all-trans retinoic acid in relapsed/refractory multiple myeloma

    Get PDF
    The efficacy of daratumumab depends partially on CD38 expression on multiple myeloma (MM) cells. We have previously shown that all-trans retinoic acid (ATRA) upregulates CD38 expression and reverts daratumumab-resistance ex vivo. We therefore evaluated the optimal dose, efficacy, and safety of daratumumab combined with ATRA in patients with daratumumab-refractory MM in a phase 1/2 study (NCT02751255). In part A of the study, 63 patients were treated with daratumumab monotherapy. Fifty patients with daratumumabrefractory MM were subsequently enrolled in part B and treated with daratumumab (reintensified schedule) combined with ATRA until disease progression. The recommended phase 2 dose of ATRA in combination with daratumumab was defined as 45 mg/m2. At this dose, the overall response rate (ORR) was 5%, indicating that the primary endpoint (ORR $15%) was not met. However, most patients (66%) achieved at least stable disease. After a median follow-up of 43 months, the median progression-free survival (PFS) for all patients was 2.8 months. Patients who previously achieved at least a partial response or minimal response/stable disease with prior daratumumab monotherapy had a significantly longer PFS compared with patients who immediately progressed during daratumumab as single agent (median PFS 3.4 and 2.8 vs 1.3 months). The median overall survival was 19.1 months. The addition of ATRA did not increase the incidence of adverse events. Flow cytometric analysis revealed that ATRA temporarily increased CD38 expression on immune cell subsets. In conclusion, the addition of ATRA and reintensification of daratumumab had limited activity in patients with daratumumab-refractory MM, which may be explained by the transient upregulation of CD38 expression. This trial was registered at www.clinicaltrials.gov as #NCT02751255

    Novel system for real-time integration of 3-D echocardiography and fluoroscopy for image-guided cardiac interventions: Preclinical validation and clinical feasibility evaluation

    Get PDF
    © 2015 IEEE. Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures

    Ixazomib, daratumumab and low-dose dexamethasone in intermediate-fit patients with newly diagnosed multiple myeloma:an open-label phase 2 trial

    Get PDF
    Background: The outcome of non-transplant eligible newly diagnosed multiple myeloma (NDMM) patients is heterogeneous, partly depending on frailty level. The aim of this study was to prospectively investigate the efficacy and safety of Ixazomib-Daratumumab-low-dose dexamethasone (Ixa-Dara-dex) in NDMM intermediate-fit patients. Methods: In this phase II multicenter HOVON-143 study, IMWG Frailty index based intermediate-fit patients, were treated with 9 induction cycles of Ixa-Dara-dex, followed by maintenance with ID for a maximum of 2 years. The primary endpoint was overall response rate on induction treatment. Patients were included from October 2017 until May 2019. Trial Registration Number: NTR6297. Findings: Sixty-five patients were included. Induction therapy resulted in an overall response rate of 71%. Early mortality was 1.5%. At a median follow-up of 41.0 months, median progression-free survival (PFS) was 18.2 months and 3-year overall survival 83%. Discontinuation of therapy occurred in 77% of patients, 49% due to progression, 9% due to toxicity, 8% due to incompliance, 3% due to sudden death and 8% due to other reasons. Dose modifications of ixazomib were required frequently (37% and 53% of patients during induction and maintenance, respectively), mainly due to, often low grade, polyneuropathy. During maintenance 23% of patients received daratumumab alone. Global quality of life (QoL) improved significantly and was clinically relevant, which persisted during maintenance treatment. Interpretation: Ixazomib-Daratumumab-low-dose dexamethasone as first line treatment in intermediate-fit NDMM patients is safe and improves global QoL. However, efficacy was limited, partly explained by ixazomib-induced toxicity, hampering long term tolerability of this 3-drug regimen. This highlights the need for more efficacious and tolerable regimens improving the outcome in vulnerable intermediate-fit patients. Funding: Janssen Pharmaceuticals, Takeda Pharmaceutical Company Limited.</p

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Current and New Therapeutic Strategies for Relapsed and Refractory Multiple Myeloma: An Update

    No full text
    Although survival of multiple myeloma patients has at least doubled during recent years, most patients eventually relapse, and treatment at this stage may be particularly complex. At the time of relapse, the use of alternative drugs to those given upfront is current practice. However, many new options are currently available for the treatment of relapsed multiple myeloma, including recently approved drugs, such as the second- and third-generation proteasome inhibitors carfilzomib and ixazomib, the immunomodulatory agent pomalidomide, the monoclonal antibodies daratumumab and elotuzumab and the histone deacetylase inhibitor panobinostat, but also new targeted agents are under active investigation (e.g. signal transduction modulators, kinesin spindle protein inhibitors, and inhibitors of NF-kB, MAPK, AKT). We here describe a new paradigm for the treatment of relapsed multiple myeloma. The final goal should be finding a balance among efficacy, toxicity, and cost and, at the end of the road, achieving long-lasting control of the disease and eventually even cure in a subset of patients

    Extended-field-of-view three-dimensional transesophageal echocardiography using image-based X-ray probe tracking

    No full text
    International audienceThe use of ultrasound imaging for guidance of cardiac interventional procedures is limited by the small field of view of the ultrasound volume. A larger view can be created by image-based registration of several partially overlapping volumes, but automatic registration is likely to fail unless the registration is initialized close to the volumes' correct alignment. In this article, we use X-ray images to track a transesophageal ultrasound probe and thereby provide initial position information for the registration of the ultrasound volumes. The tracking is possible using multiple X-rays or just a single X-ray for each probe position. We test the method in a phantom experiment and find that with at least 50% overlap, 88% of volume pairs are correctly registered when tracked using three X-rays and 86% when using single X-rays. Excluding failed registrations with errors greater than 10 mm, the average registration accuracy is 2.92 mm between ultrasound volumes and 4.75 mm for locating an ultrasound volume in X-ray space. We conclude that the accuracy and robustness of the registrations are sufficient to provide useful images for interventional guidance
    corecore