854 research outputs found

    Localized Distributions of Quasi Two-Dimensional Electronic States near Defects Artificially Created at Graphite Surfaces in Magnetic Fields

    Full text link
    We measured the local density of states of a quasi two-dimensional electron system (2DES) near defects, artificially created by Ar-ion sputtering, on surfaces of highly oriented pyrolytic graphite (HOPG) with scanning tunneling spectroscopy (STS) in high magnetic fields. At valley energies of the Landau level spectrum, we found two typical localized distributions of the 2DES depending on the defects. These are new types of distributions which are not observed in the previous STS work at the HOPG surface near a point defect [Y. Niimi \textit{et al}., Phys. Rev. Lett. {\bf 97}, 236804 (2006).]. With increasing energy, we observed gradual transformation from the localized distributions to the extended ones as expected for the integer quantum Hall state. We show that the defect potential depth is responsible for the two localized distributions from comparison with theoretical calculations.Comment: 4 pages, 3 figure

    Real-Space Imaging of Alternate Localization and Extension of Quasi Two-Dimensional Electronic States at Graphite Surfaces in Magnetic Fields

    Full text link
    We measured the local density of states (LDOS) of a quasi two-dimensional (2D) electron system near point defects on a surface of highly oriented pyrolytic graphite (HOPG) with scanning tunneling microscopy and spectroscopy. Differential tunnel conductance images taken at very low temperatures and in high magnetic fields show a clear contrast between localized and extended spatial distributions of the LDOS at the valley and peak energies of the Landau level spectrum, respectively. The localized electronic state has a single circular distribution around the defects with a radius comparable to the magnetic length. The localized LDOS is in good agreement with a spatial distribution of a calculated wave function for a single electron in 2D in a Coulomb potential in magnetic fields.Comment: 4 pages, 4 figure

    Indication of intrinsic spin Hall effect in 4d and 5d transition metals

    Full text link
    We have investigated spin Hall effects in 4dd and 5dd transition metals, Nb, Ta, Mo, Pd and Pt, by incorporating the spin absorption method in the lateral spin valve structure; where large spin current preferably relaxes into the transition metals, exhibiting strong spin-orbit interactions. Thereby nonlocal spin valve measurements enable us to evaluate their spin Hall conductivities. The sign of the spin Hall conductivity changes systematically depending on the number of dd electrons. This tendency is in good agreement with the recent theoretical calculation based on the intrinsic spin Hall effect.Comment: 5 pages, 4 figure

    Micropropagation of Vitis amurensis Rupr.: An improved protocol

    Get PDF
    Research NoteAn efficient micropropagation procedure of V. amurensis cv. Zuoshan 1 was established. NAA combined with BA resulted in callus formation and inhibition of shoot growth, whereas a combination of 0.3 M IAA and 4.4 M BA gave highest shoot growth and multiplication. IAA at 2.8 and 5.7 M led to high root formation of shoots. 30 g l-1 sucrose was needed for high shoot growth, while high rooting was achieved with 0-20 g l-1 sucrose. Intact leaves are required for a high level of shoot rooting.

    Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Get PDF
    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)(2.1 \pm 0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure

    Spin-Echo Measurements for an Anomalous Quantum Phase of 2D Helium-3

    Full text link
    Previous heat-capacity measurements of our group had shown the possible existence of an anomalous quantum phase containing the zero-point vacancies (ZPVs) in 2D 3^{3}He. The system is monolayer 3^{3}He adsorbed on graphite preplated with monolayer 4^{4}He at densities (ρ\rho) just below the 4/7 commensurate phase (0.8ρ/ρ4/710.8\leq \rho /\rho_{4/7}\leq 1). We carried out pulsed-NMR measurements in order to examine the microscopic and dynamical nature of this phase. The measured decay of spin echo signals shows the non-exponential behaviour. The decay curve can be fitted with the double exponential function, but the relative intensity of the component with a longer time constant is small (5%) and does not depend on density and temperature, which contradicts the macroscopic fluid and 4/7 phase coexistence model. This slowdown is likely due to the mosaic angle spread of Grafoil substrate and the anisotropic spin-spin relaxation time T2T_{2} in 2D systems with respect to the magnetic field direction. The inverse T2T_2 value deduced from the major echo signal with a shorter time constant, which obeys the single exponential function, decreases linearly with decreasing density from n=1n=1, supporting the ZPV model.Comment: 4 pages, 6 figure

    Quantum Coherence at Low Temperatures in Mesoscopic Systems: Effect of Disorder

    Full text link
    We study the disorder dependence of the phase coherence time of quasi one-dimensional wires and two-dimensional (2D) Hall bars fabricated from a high mobility GaAs/AlGaAs heterostructure. Using an original ion implantation technique, we can tune the intrinsic disorder felt by the 2D electron gas and continuously vary the system from the semi-ballistic regime to the localized one. In the diffusive regime, the phase coherence time follows a power law as a function of diffusion coefficient as expected in the Fermi liquid theory, without any sign of low temperature saturation. Surprisingly, in the semi-ballistic regime, it becomes independent of the diffusion coefficient. In the strongly localized regime we find a diverging phase coherence time with decreasing temperature, however, with a smaller exponent compared to the weakly localized regime.Comment: 21 pages, 30 figure

    Magnetism as a mass term of the edge states in graphene

    Full text link
    The magnetism by the edge states in graphene is investigated theoretically. An instability of the pseudo-spin order of the edge states induces ferrimagnetic order in the presence of the Coulomb interaction. Although the next nearest-neighbor hopping can stabilize the pseudo-spin order, a strong Coulomb interaction makes the pseudo-spin unpolarized and real spin polarized. The magnetism of the edge states makes two peaks of the density of states in the conduction and valence energy bands near the Fermi point. Using a continuous model of the Weyl equation, we show that the edge-induced gauge field and the spin dependent mass terms are keys to make the magnetism of the edge states. A relationship between the magnetism of the edge states and the parity anomaly is discussed.Comment: 7 pages, 5 figure

    Growth hormone secretion from pituitary cells in chronic renal insufficiency

    Get PDF
    Growth hormone secretion from pituitary cells in chronic renal insufficiency. To examine whether growth hormone (GH) secretion is adversely affected by chronic renal insufficiency (CRI), the GH secretory response of dispersed anterior pituitary cells perifused with GH-releasing hormone (GHRH) was investigated in 5/6 nephrectomized (CRI, N = 18) and sham-operated (N = 18) rats. Two weeks after nephrectomy, during a period of stable uremia, CRI rats had significantly higher serum concentrations (mean ± SEM) of urea nitrogen and creatinine than sham rats, 16.8 ± 1.4 µmol/liter (47 ± 4 mg/dl) and 79.6 ± 0.0 μmol/liter (0.9 ± 0.0 mg/dl) versus 6.1 ± 0.4µmol/liter (17 ± 1 mg/dl) and 35.4 ± 0.0 µmol/liter (0.4 ± 0.0 mg/dl), respectively (P < 0.0001). Incremental gains in body weight and nose to tail-tip length of CRI rats over two weeks were also significantly depressed, 53.3 ± 5.38 g (CRI) versus 87.0 ± 3.78 g (sham; P < 0.0001) and 3.2 ± 0.2 cm (CRI) versus 3.6 ± 0.1 cm (sham; P < 0.05). The cumulative food intake as well as food efficiency (g food consumed/g weight gain) were also adversely influenced by the uremic state: food intake 304 ± 1 g (CRI) versus 397 ± 6 g (sham; P < 0.0001) and food efficiency 0.173 ± 0.013 g/g of weight gain (CRI) versus 0.219 ± 0.008 g/g of weight gain (sham). No significant difference in GH secretory rate (ng/min/107 cells) was found between the uremic and sham animals under basal conditions, 65.2 ± 2.1 (CRI) and 67.9 ± 2.2 (sham) or in response to GH-releasing hormone, 282.8 ± 42.4 (CRI) versus 306.2 ± 42.6 (sham). The secretory curves representing concentration-GH response were similar in both groups of animals. This study provides direct evidence that the response of pituitary cells to GHRH is preserved in moderate CRI and suggests that, at this degree of renal function reduction, any disturbance of GH secretion must be due to dysfunctions other than the secretory capacity of the pituitary gland itself
    corecore