704 research outputs found

    Partial wave treatment of Supersymmetric Dark Matter in the presence of CP - violation

    Get PDF
    We present an improved partial wave analysis of the dominant LSP annihilation channel to a fermion-antifermion pair which avoids the non-relativistic expansion being therefore applicable near thresholds and poles. The method we develop allows of contributions of any partial wave in the total angular momentum J in contrast to partial wave analyses in terms of the orbital angular momentum L of the initial state, which is usually truncated to p-waves, and yields very accurate results. The method is formulated in such a way as to allow easy handling of CP-violating phases residing in supersymmetric parameters. We apply this refined partial wave technique in order to calculate the neutralino relic density in the constrained MSSM (CMSSM) in the presence of CP-violating terms occurring in the Higgs - mixing parameter \mu and trilinear A coupling for large tanb. The inclusion of CP-violating phases in mu and A does not upset significantly the picture and the annihilation of the LSP's to a b b_bar, through Higgs exchange, is still the dominant mechanism in obtaining cosmologically acceptable neutralino relic densities in regions far from the stau-coannihilation and the `focus point'. Significant changes can occur if we allow for phases in the gaugino masses and in particular the gluino mass.Comment: 23 pages LaTeX, 10 eps figures, version to appear in PR

    Exact Cross Sections for the Neutralino-Slepton Coannihilation

    Get PDF
    Coannihilation processes provide an important additional mechanism for reducing the density of stable relics in the Universe. In the case of the stable lightest neutralino of the MSSM, and in particular the Constrained MSSM (CMSSM), the coannihilation with sleptons plays a major role in opening up otherwise cosmologically excluded ranges of supersymmetric parameters. In this paper, we derive a full set of exact, analytic expressions for the coannihilation of the lightest neutralino with the sleptons into all two--body tree--level final states in the framework of minimal supersymmetry. We make no simplifying assumptions about the neutralino nor about sfermion masses and mixings other than the absence of explicit CP--violating terms and inter--family mixings. The expressions should be particularly useful in computing the neutralino WIMP relic abundance without the approximation of partial wave expansion. We illustrate the effect of our analytic results with numerical examples and demonstrate a sizeable difference with approximate expressions available in the literature.Comment: LaTeX, 46 pages, 8 eps figure

    Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale

    Get PDF
    We study the NMSSM with universal Susy breaking terms (besides the Higgs sector) at the GUT scale. Within this constrained parameter space, it is not difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced cross section in the diphoton channel. An additional lighter Higgs boson with reduced couplings and a mass <123 GeV is potentially observable at the LHC. The NMSSM-specific Yukawa couplings lambda and kappa are relatively large and tan(beta) is small, such that lambda, kappa and the top Yukawa coupling are of order 1 at the GUT scale. The lightest stop can be as light as 105 GeV, and the fine-tuning is modest. WMAP constraints can be satisfied by a dominantly higgsino-like LSP with substantial bino, wino and singlino admixtures and a mass of ~60-90 GeV, which would potentially be detectable by XENON100.Comment: 20 pages, 14 figure

    Gravitino Dark Matter in the CMSSM and Implications for Leptogenesis and the LHC

    Full text link
    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non--thermal one from neutralino or stau decays after freeze--out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non--collider SUSY searches. The region where the neutralino is the next--to--lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature \treh is large, \treh\sim10^{9}\gev. On the other side, we find an upper bound \treh\lsim 5\times 10^{9}\gev. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of \treh\sim 10^{9}\gev. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC.Comment: JHEP version, several improvements and update

    The Interplay Between Collider Searches For Supersymmetric Higgs Bosons and Direct Dark Matter Experiments

    Get PDF
    In this article, we explore the interplay between searches for supersymmetric particles and Higgs bosons at hadron colliders (the Tevatron and the LHC) and direct dark matter searches (such as CDMS, ZEPLIN, XENON, EDELWEISS, CRESST, WARP and others). We focus on collider searches for heavy MSSM Higgs bosons (AA, HH, H±H^{\pm}) and how the prospects for these searches are impacted by direct dark matter limits and vice versa. We find that the prospects of these two experimental programs are highly interrelated. A positive detection of AA, HH or H±H^{\pm} at the Tevatron would dramatically enhance the prospects for a near future direct discovery of neutralino dark matter. Similarly, a positive direct detection of neutralino dark matter would enhance the prospects of discovering heavy MSSM Higgs bosons at the Tevatron or the LHC. Combining the information obtained from both types of experimental searches will enable us to learn more about the nature of supersymmetry.Comment: 22 pages, 28 figure

    Supergravity with a Gravitino LSP

    Full text link
    We investigate supergravity models in which the lightest supersymmetric particle (LSP) is a stable gravitino. We assume that the next-lightest supersymmetric particle (NLSP) freezes out with its thermal relic density before decaying to the gravitino at time t ~ 10^4 s - 10^8 s. In contrast to studies that assume a fixed gravitino relic density, the thermal relic density assumption implies upper, not lower, bounds on superpartner masses, with important implications for particle colliders. We consider slepton, sneutrino, and neutralino NLSPs, and determine what superpartner masses are viable in all of these cases, applying CMB and electromagnetic and hadronic BBN constraints to the leading two- and three-body NLSP decays. Hadronic constraints have been neglected previously, but we find that they provide the most stringent constraints in much of the natural parameter space. We then discuss the collider phenomenology of supergravity with a gravitino LSP. We find that colliders may provide important insights to clarify BBN and the thermal history of the Universe below temperatures around 10 GeV and may even provide precise measurements of the gravitino's mass and couplings.Comment: 24 pages, updated figures and minor changes, version to appear in Phys.Rev.

    Defect Detection in Bonded Structures Using the Reverberant Wavefield

    Get PDF
    With the increasing use of adhesives in the automotive, aerospace, and manufacturing industries, there is a growing interest in developing nondestructive methods for locating defects in adhesive bonds. While conventional techniques which utilize ultrasonic waves and Lamb waves are likely candidates for obtaining high resolution images of defects, these methods may not be practical for assembly line applications where the time required to scan the bonds and the access to the bonds are often limited. The objective of this work is to develop an approach for detecting defects in bonds that requires only a limited number of measurements of the reverberant acoustic wavefield (i.e., waves that are multiply scattered off the boundaries of the structure) made over a band of frequencies

    Upper and Lower Limits on Neutralino WIMP Mass and Spin--Independent Scattering Cross Section, and Impact of New (g-2)_{mu} Measurement

    Get PDF
    We derive the allowed ranges of the spin--independent interaction cross section \sigsip for the elastic scattering of neutralinos on proton for wide ranges of parameters of the general Minimal Supersymmetric Standard Model. We investigate the effects of the lower limits on Higgs and superpartner masses from colliders, as well as the impact of constraints from \bsgamma and the new measurement of \gmtwo on the upper and lower limits on \sigsip. We further explore the impact of the neutralino relic density, including coannihilation, and of theoretical assumptions about the largest allowed values of the supersymmetric parameters. For μ>0\mu>0, requiring the latter to lie below 1\tev leads to \sigsip\gsim 10^{-11}\pb at \mchi\sim100\gev and \sigsip\gsim 10^{-8}\pb at \mchi\sim1\tev. When the supersymmetric parameters are allowed above 1\tev, for 440\gev \lsim \mchi\lsim 1020 \gev we derive a {\em parameter--independent lower limit} of \sigsip \gsim 2\times 10^{-12}\pb. (No similar lower limits can be set for μ<0\mu<0 nor for 1020\gev\lsim\mchi\lsim2.6\tev.) Requiring \abundchi<0.3 implies a {\em parameter--independent upper limit} \mchi\lsim2.6\tev. The new \epem--based measurement of (g2)μ(g-2)_{\mu} restricts \mchi\lsim 350\gev at 1σ1 \sigma CL and \mchi\lsim515\gev at 2σ2 \sigma CL, and implies μ>0\mu>0. The largest allowed values of \sigsip have already become accessible to recent experimental searches.Comment: LaTeX, 17 pages, 9 eps figures. Version to appear in JHE
    corecore