155 research outputs found

    A 360 Degree View Of Selecting A Lubricant For My New Low GWP Refrigerant

    Get PDF
    The advent of environmentally friendly refrigerants and the global drive for higher efficiency is bringing change to our industry. A review of current HFC refrigerants and their lubricant choices over a range of evaporator temperatures will be summarized and compared to the numerous low GWP refrigerant replacements and associated lubricant considerations. The paper details a methodology for matching a refrigerant and a lubricant over a variety of low GWP refrigerant options. The current challenges in meeting miscibility, solubility, discharge temperature and working viscosity targets will be discussed and options presented. As the industry develops and implements both interim, lower GWP alternatives and long-term low or ultra-low GWP refrigerant options, in some cases the door has opened for development of new or optimized lubricant chemistries which are both compatible with the new refrigerants and also maintain or improve equipment performance and reliability. For example, CPI recognizes that the solubility characteristics of the low GWP refrigerants in many cases are different than the incumbent HFC refrigerants. CPI has investigated the solubility characteristics of new refrigerants and has developed innovative lubricant formulations to control solubility to minimize the need for equipment hardware or operating changes. While low GWP refrigerants are environmentally friendly with a shorter atmospheric life, in some cases either the refrigerants or the equipment operating conditions will bring about system chemistry concerns that didn’t exist with the stable HFC refrigerants such as R-134a. CPI will discuss methods to monitor for lubricant and refrigerant stability in a refrigeration system, and options to mitigate chemical stability concerns. The information shared in this presentation will provide a 360-degree view of the important aspects of matching a refrigerant to a lubricant for successful and reliable equipment operation

    Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological and Environmental Parameters

    Get PDF
    These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to the Greater Mekong Subregion. Our models have been applied to malaria in Indonesia, Korea, and other regions in the world with similar success

    Contributors to the March Issue/Notes

    Get PDF
    Notes by Joseph F. Nigro, Francis E. Bright, Edward F. Grogan, James H. Graham, Jr., John C. O\u27Connor, and William P. Mahoney

    Book Reviews

    Get PDF
    Book reviews by Leon L. Lancaster, Jr., Jack C. Hynes, James J. Kearney, Joseph F. Nigro, Louis P. Da Pra, and Francis Bright

    Contributors to the March Issue/Notes

    Get PDF
    Notes by Joseph F. Nigro, Francis E. Bright, Edward F. Grogan, James H. Graham, Jr., John C. O\u27Connor, and William P. Mahoney

    Space Archeology Overview at Gordion: 2010 to 2012

    Get PDF
    In fiscal years 2010, 2011, and 2012, Compton Tucker was the principal investigator of a NASA Space Archaeology project that worked at Gordion, in Central Turkey. Tucker was assisted by an excellent team of co-workers including Joseph Nigro and Daniel Slayback of Science Systems Applications Incorporated, Jenny Strum of the University of New Mexico, and Karina Yager, a post doctoral fellow at NASA/GSFC. This report summaries their research activities at Gordion for the field seasons of 2010, 2011, and 2012. Because of the possible use of our findings at Gordion for tomb robbing there and/or the encouragement of potential tomb robbers using our geophysical survey methods to locate areas to loot, we have not published any of our survey results in the open literature nor placed any of these results on any web sites. These 2010- 2012 survey results remain in the confidential archives of the University of Pennsylvania's University Museum of Archaeology and Anthropology, the group that leads the Gordion Excavation and Research Project. Excavations are planned for 2013 at Gordion, including several that will be based upon the research results in this report. The site of Gordion in central Turkey, famous as the home of King Midas, whose father's intricately tied knot gave the site its name, also served as the center of the Phrygian kingdom that ruled much of Central Anatolia in Asia Minor during the early first millennium B.C. Gordion has been a University of Pennsylvania Museum of Archaeology and Anthropology excavation project since 1950, yet the site is incompletely published despite six decades of research. The primary obstacles related to the site and its preservation were two problems that NASA technology could address: (1) critical survey errors in the hundreds of maps and plans produced by the earlier excavators, most of which used mutually incompatible geospatial referencing systems, that prevented any systematic understanding of the site; and (2) agricultural encroachment upon the site that was compromising its archaeological integrity. Our NASA Space Archaeology proposal was written to address both of these problems. When we started working at Gordion in 2010, we added a third objective, (3) ground penetrating radar and magnetic geophysical surveys of threatened areas. The first objective our NASA Space Archaeology Project was to provide the University of Pennsylvania's Museum of Archaeology and Anthropology a system to rectify and incorporate all existing survey data from Gordion, including previous aerial photographs of the site, detailed site surveys, maps, and excavation plans, into a common mapping system. This was accomplished with a Geographic Information System (GIS) based upon a 60 cm Quickbird satellite image ortho-rectified using Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation data and tied to a known datum at Gordion. This enabled the first accurate, multi-layer plan of this complex site, occupied almost continuously from the Bronze Age to the 1st millennium CE, and made possible Gordion's three-dimensional development for the first time

    Modeling Malaria Transmission in Thailand and Indonesia

    Get PDF
    Malaria Modeling and Surveillance is a project in the NASA Applied Sciences Public Health Applications Program. The main objectives of this project are: 1) identification of the potential breeding sites for major vector species: 2) implementation of a malaria transmission model to identify they key factors that sustain or intensify malaria transmission; and 3) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity. Remote sensing and GIs are the essential elements of this project. The NASA Earth science data sets used in this project include AVHRR Pathfinder, TRMM, MODIS, NSIPP and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of precipitation, temperatures, humidity and vegetation. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Examples for spatio-temporal modeling of malaria transmissions in Southeast Asia are given. Discrete event simulations were used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to Southeast Asia. The model and techniques are equally applicable to other regions of the world, when appropriate epidemiological and vector ecological parameters are used as input

    Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand

    Get PDF
    In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the mean training accuracy weighted by provincial malaria cases was 73%. Prediction of malaria cases for 2001 using neural networks trained for 1994-2000 gave a weighted accuracy of 53%. Because there was a significant decrease (31%) in the number of malaria cases in the 19 provinces from 2000 to 2001, the networks overestimated malaria transmissions. The decrease in transmission was not due to climatic or environmental changes. Thailand is a country with long borders. Migrant populations from the neighboring countries enlarge the human malaria reservoir because these populations have more limited access to health care. This issue also confounds the complexity of modeling malaria based on meteorological and environmental variables alone. In spite of the relatively low resolution of the data and the impact of migrant populations, we have uncovered a reasonably clear dependency of malaria on meteorological and environmental remote sensing variables. When other contextual determinants do not vary significantly, using neural network analysis along with remote sensing variables to predict malaria endemicity should be feasible

    Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Get PDF
    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulation

    Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    Get PDF
    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical poin
    • …
    corecore