3,155 research outputs found

    Universal Dynamics of Independent Critical Relaxation Modes

    Get PDF
    Scaling behavior is studied of several dominant eigenvalues of spectra of Markov matrices and the associated correlation times governing critical slowing down in models in the universality class of the two-dimensional Ising model. A scheme is developed to optimize variational approximants of progressively rapid, independent relaxation modes. These approximants are used to reduce the variance of results obtained by means of an adaptation of a quantum Monte Carlo method to compute eigenvalues subject to errors predominantly of statistical nature. The resulting spectra and correlation times are found to be universal up to a single, non-universal time scale for each model

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Monte Carlo Optimization of Trial Wave Functions in Quantum Mechanics and Statistical Mechanics

    Full text link
    This review covers applications of quantum Monte Carlo methods to quantum mechanical problems in the study of electronic and atomic structure, as well as applications to statistical mechanical problems both of static and dynamic nature. The common thread in all these applications is optimization of many-parameter trial states, which is done by minimization of the variance of the local or, more generally for arbitrary eigenvalue problems, minimization of the variance of the configurational eigenvalue.Comment: 27 pages to appear in " Recent Advances in Quantum Monte Carlo Methods" edited by W.A. Leste

    Surface and bulk transitions in three-dimensional O(n) models

    Get PDF
    Using Monte Carlo methods and finite-size scaling, we investigate surface criticality in the O(n)(n) models on the simple-cubic lattice with n=1n=1, 2, and 3, i.e. the Ising, XY, and Heisenberg models. For the critical couplings we find Kc(n=2)=0.4541655(10)K_{\rm c}(n=2)=0.454 1655 (10) and Kc(n=3)=0.693002(2)K_{\rm c}(n=3)= 0.693 002 (2). We simulate the three models with open surfaces and determine the surface magnetic exponents at the ordinary transition to be yh1(o)=0.7374(15)y_{h1}^{\rm (o)}=0.7374 (15), 0.781(2)0.781 (2), and 0.813(2)0.813 (2) for n=1n=1, 2, and 3, respectively. Then we vary the surface coupling K1K_1 and locate the so-called special transition at κc(n=1)=0.50214(8)\kappa_{\rm c} (n=1)=0.50214 (8) and κc(n=2)=0.6222(3)\kappa_{\rm c} (n=2)=0.6222 (3), where κ=K1/K1\kappa=K_1/K-1. The corresponding surface thermal and magnetic exponents are yt1(s)=0.715(1)y_{t1}^{\rm (s)} =0.715 (1) and yh1(s)=1.636(1)y_{h1}^{\rm (s)} =1.636 (1) for the Ising model, and yt1(s)=0.608(4)y_{t1}^{\rm (s)} =0.608 (4) andyh1(s)=1.675(1)y_{h1}^{\rm (s)} =1.675 (1) for the XY model. Finite-size corrections with an exponent close to -1/2 occur for both models. Also for the Heisenberg model we find substantial evidence for the existence of a special surface transition.Comment: TeX paper and 10 eps figure

    Scaling in the vicinity of the four-state Potts fixed point

    Get PDF
    We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.Comment: 19 pages, 7 figure

    Specific heat of the simple-cubic Ising model

    Full text link
    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions and with a set of experimental results. Our results include a determination of the universal amplitude ratio of the specific-heat divergences at both sides of the critical point.Comment: 20 pages, 3 figure

    Assessing satellite-derived land product quality for earth system science applications: results from the ceos lpv sub-group

    Get PDF
    The value of satellite derived land products for science applications and research is dependent upon the known accuracy of the data. CEOS (Committee on Earth Observation Satellites), the space arm of the Group on Earth Observations (GEO), plays a key role in coordinating the land product validation process. The Land Product Validation (LPV) sub-group of the CEOS Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. This paper provides an overview of LPV sub-group focus area activities, which cover seven terrestrial Essential Climate Variables (ECVs). The contribution will enhance coordination of the scientific needs of the Earth system communities with global LPV activities

    Transfer-matrix approach to the three-dimensional bond percolation: An application of Novotny's formalism

    Get PDF
    A transfer-matrix simulation scheme for the three-dimensional (d=3) bond percolation is presented. Our scheme is based on Novotny's transfer-matrix formalism, which enables us to consider arbitrary (integral) number of sites N constituting a unit of the transfer-matrix slice even for d=3. Such an arbitrariness allows us to perform systematic finite-size-scaling analysis of the criticality at the percolation threshold. Diagonalizing the transfer matrix for N =4,5,...,10, we obtain an estimate for the correlation-length critical exponent nu = 0.81(5)

    Critical line of an n-component cubic model

    Full text link
    We consider a special case of the n-component cubic model on the square lattice, for which an expansion exists in Ising-like graphs. We construct a transfer matrix and perform a finite-size-scaling analysis to determine the critical points for several values of n. Furthermore we determine several universal quantities, including three critical exponents. For n<2, these results agree well with the theoretical predictions for the critical O(n) branch. This model is also a special case of the (Nα,NβN_\alpha,N_\beta) model of Domany and Riedel. It appears that the self-dual plane of the latter model contains the exactly known critical points of the n=1 and 2 cubic models. For this reason we have checked whether this is also the case for 1<n<2. However, this possibility is excluded by our numerical results
    corecore