1,613 research outputs found

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Who Receives Specialist Palliative Care in Western Australia - and Who Misses Out

    Get PDF
    Our research describes the provision of palliative care services at a time of transition.Typically, palliative care has offered a holistic, non-curative focus with an emphasis on improving the quality of life of people with life-limiting conditions. Traditionally it has aimed to improve the conditions of people who were dying of cancer. Palliative care now seeks to extend a holistic, team-based and family-centred approach to people with other life-limiting conditions. Until now the degree to which this aim was reflected in the actual provision of health services has been unclear. There has been a paucity of population-based data on which to base equitable healthcare decision-making regarding the extension of palliative care topeople suffering from a range of life-limiting, complex and painful conditions. Our study provides such data for Western Australia and provides an insight into who is missing out on palliative care services in the last year of life

    Exact critical points of the O(nn) loop model on the martini and the 3-12 lattices

    Full text link
    We derive the exact critical line of the O(nn) loop model on the martini lattice as a function of the loop weight nn.A finite-size scaling analysis based on transfer matrix calculations is also performed.The numerical results coincide with the theoretical predictions with an accuracy up to 9 decimal places. In the limit n0n\to 0, this gives the exact connective constant μ=1.7505645579...\mu=1.7505645579... of self-avoiding walks on the martini lattice. Using similar numerical methods, we also study the O(nn) loop model on the 3-12 lattice. We obtain similarly precise agreement with the exact critical points given by Batchelor [J. Stat. Phys. 92, 1203 (1998)].Comment: 4 pages, 3 figures, 2 table

    Improved Phenomenological Renormalization Schemes

    Full text link
    An analysis is made of various methods of phenomenological renormalization based on finite-size scaling equations for inverse correlation lengths, the singular part of the free energy density, and their derivatives. The analysis is made using two-dimensional Ising and Potts lattices and the three-dimensional Ising model. Variants of equations for the phenomenological renormalization group are obtained which ensure more rapid convergence than the conventionally used Nightingale phenomenological renormalization scheme. An estimate is obtained for the critical finite-size scaling amplitude of the internal energy in the three-dimensional Ising model. It is shown that the two-dimensional Ising and Potts models contain no finite-size corrections to the internal energy so that the positions of the critical points for these models can be determined exactly from solutions for strips of finite width. It is also found that for the two-dimensional Ising model the scaling finite-size equation for the derivative of the inverse correlation length with respect to temperature gives the exact value of the thermal critical exponent.Comment: 14 pages with 1 figure in late

    Numerical Studies of the Two Dimensional XY Model with Symmetry Breaking Fields

    Full text link
    We present results of numerical studies of the two dimensional XY model with four and eight fold symmetry breaking fields. This model has recently been shown to describe hydrogen induced reconstruction on the W(100) surface. Based on mean-field and renormalization group arguments,we first show how the interplay between the anisotropy fields can give rise to different phase transitions in the model. When the fields are compatible with each other there is a continuous phase transition when the fourth order field is varied from negative to positive values. This transition becomes discontinuous at low temperatures. These two regimes are separated by a multicritical point. In the case of competing four and eight fold fields, the first order transition at low temperatures opens up into two Ising transitions. We then use numerical methods to accurately locate the position of the multicritical point, and to verify the nature of the transitions. The different techniques used include Monte Carlo histogram methods combined with finite size scaling analysis, the real space Monte Carlo Renormalization Group method, and the Monte Carlo Transfer Matrix method. Our numerical results are in good agreement with the theoretical arguments.Comment: 29 pages, HU-TFT-94-36, to appear in Phys. Rev. B, Vol 50, November 1, 1994. A LaTeX file with no figure

    Conformal invariance and linear defects in the two-dimensional Ising model

    Full text link
    Using conformal invariance, we show that the non-universal exponent eta_0 associated with the decay of correlations along a defect line of modified bonds in the square-lattice Ising model is related to the amplitude A_0=xi_n/n of the correlation length \xi_n(K_c) at the bulk critical coupling K_c, on a strip with width n, periodic boundary conditions and two equidistant defect lines along the strip, through A_0=(\pi\eta_0)^{-1}.Comment: Old paper, for archiving. 5 pages, 4 figures, IOP macro, eps

    Wetting of a symmetrical binary fluid mixture on a wall

    Full text link
    We study the wetting behaviour of a symmetrical binary fluid below the demixing temperature at a non-selective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On approaching liquid/vapour coexistence, however, the thickness of the liquid film increases and it may demix and then wet the substrate. We show that the wetting properties are determined by an interplay of the two length scales related to the density and the composition fluctuations. The problem is analysed within the framework of a generic two component Ginzburg-Landau functional (appropriate for systems with short-ranged interactions). This functional is minimized both numerically and analytically within a piecewise parabolic potential approximation. A number of novel surface transitions are found, including first order demixing and prewetting, continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.

    Measuring elastic nonlinearity in a soft solid using a tilted acoustic radiation force for shear wave excitation

    Get PDF
    Excitation of multiple wave modes using shear wave elastography can result in additional information about the tissue's material characteristics and, potentially, improve disease diagnosis. Theoretically, tilting the acoustic radiation force excitation axis with respect to the material's symmetry axis should excite several wave modes in the material. In this work, we have experimentally demonstrated proof of concept in a uniaxially stretched phantom, while increasing the stretch level. Tilted acoustic radiation force experiments showed a clearly visible second wave mode across the stretch direction for larger stretches (>160%)

    Monte Carlo Determination of Multiple Extremal Eigenpairs

    Full text link
    We present a Monte Carlo algorithm that allows the simultaneous determination of a few extremal eigenpairs of a very large matrix without the need to compute the inner product of two vectors or store all the components of any one vector. The new algorithm, a Monte Carlo implementation of a deterministic one we recently benchmarked, is an extension of the power method. In the implementation presented, we used a basic Monte Carlo splitting and termination method called the comb, incorporated the weight cancellation method of Arnow {\it et al.}, and exploited a new sampling method, the sewing method, that does a large state space sampling as a succession of small state space samplings. We illustrate the effectiveness of the algorithm by its determination of the two largest eigenvalues of the transfer matrices for variously-sized two-dimensional, zero field Ising models. While very likely useful for other transfer matrix problems, the algorithm is however quite general and should find application to a larger variety of problems requiring a few dominant eigenvalues of a matrix.Comment: 22 pages, no figure

    On the Symmetry of Universal Finite-Size Scaling Functions in Anisotropic Systems

    Full text link
    In this work a symmetry of universal finite-size scaling functions under a certain anisotropic scale transformation is postulated. This transformation connects the properties of a finite two-dimensional system at criticality with generalized aspect ratio ρ>1\rho > 1 to a system with ρ<1\rho < 1. The symmetry is formulated within a finite-size scaling theory, and expressions for several universal amplitude ratios are derived. The predictions are confirmed within the exactly solvable weakly anisotropic two-dimensional Ising model and are checked within the two-dimensional dipolar in-plane Ising model using Monte Carlo simulations. This model shows a strongly anisotropic phase transition with different correlation length exponents νν\nu_{||} \neq \nu_\perp parallel and perpendicular to the spin axis.Comment: RevTeX4, 4 pages, 3 figure
    corecore