128 research outputs found

    Detection and analysis of RNA methylation [version 1; peer review: 2 approved]

    Get PDF
    Our understanding of the expanded genetic alphabet has been growing rapidly over the last two decades, and many of these developments came more than 80 years after the original discovery of a modified guanine in tuberculosis DNA. These new understandings, leading to the field of epigenetics, have led to exciting new fundamental and applied knowledge and to the development of novel classes of drugs exploiting this new biology. The number of methyl modifications to RNA is about seven times greater than those found on DNA, and our ability to interrogate these enigmatic nucleobases has lagged significantly until recent years as an explosion in technologies and understanding has revealed the roles and regulation of RNA methylation in several fundamental and disease-associated biological processes. Here, we outline how the technology has evolved and which strategies are commonly used in the modern epitranscriptomics revolution and give a foundation in the understanding and application of the rich variety of these methods to novel biological questions

    Genetics of human and canine dilated cardiomyopathy

    Get PDF
    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed

    HOXC8 regulates self-renewal, differentiation and transformation of breast cancer stem cells

    Get PDF
    Background: Homeobox genes are master regulators of cell fate during embryonic development and their expression is altered in cancer. By regulating the balance between cell proliferation and differentiation, they maintain homeostasis of normal tissues. Here, we screened the expression of homeobox genes in mammary stem cells to establish their role in stem cells transformation in breast cancer. Methods: Using a Homeobox Genes PCR array, we screened 83 homeobox genes in normal cancer breast stem/progenitor cells isolated by flow cytometry. The candidate gene HOXC8 epigenetic regulation was studied by DNA methylation and miRNA expression analyses. Self-renewal and differentiation of HOXC8-overexpressing or knockdown cells were assessed by flow cytometry and mammosphere, 3D matrigel and soft agar assays. Clinical relevance of in vitro findings were validated by bioinformatics analysis of patient datasets from TCGA and METABRIC studies. Results: In this study we demonstrate altered expression of homeobox genes in breast cancer stem/progenitor cells. HOXC8 was consistently downregulated in stem/progenitor cells of all breast molecular subtypes, thus representing an interesting tumour suppressor candidate. We show that downregulated expression of HOXC8 is associated with DNA methylation at the gene promoter and expression of miR196 family members. Functional studies demonstrated that HOXC8 gain of function induces a decrease in the CD44+/CD24-/low cancer stem cell population and proportion of chemoresistant cells, with a concomitant increase in CD24+ differentiated cells. Increased HOXC8 levels also decrease the ability of cancer cells to form mammospheres and to grow in anchorage-independent conditions. Furthermore, loss of HOXC8 in non-tumorigenic mammary epithelial cells expands the cancer stem/progenitor cells pool, increases stem cell self-renewal, prevents differentiation induced by retinoic acid and induces a transformed phenotype. Conclusions: Taken together, our study points to an important role of homeobox genes in breast cancer stem/progenitor cell function and establishes HOXC8 as a suppressor of stemness and transformation in the mammary gland lineag

    Parental protein malnutrition programmes of offspring growth and vasculature to increase risk of cardiovascular, pancreatic, and metabolic disease: lessons learned from animal studies

    Get PDF
    It is well known that consumption of a balanced diet throughout adulthood is key toward maintenance of optimal body weight and cardiovascular health. Research using animal models can provide insights into the programming of short and long-term health by parental diet and potential mechanisms by which, for example, protein intake may influence fetal development, adolescent health, and adult morbidity/mortality. Malnutrition, whether consumption of too many or too few individual nutrients or energy, is detrimental to health. For example, in Westernised societies, one of the principal factors contributing towards the global epidemic of obesity is over-consumption of calories, relative to the expenditure of calories through physical activity. A large body of evidence now suggests that many chronic diseases of adulthood, such as obesity and diabetes, are linked to the nutritional environment experienced by the fetus in utero. Maternal consumption of a poor-quality, nutritionally unbalanced diet can programme offspring to become obese, develop high blood pressure and diabetes, and to experience premature morbidity and mortality. More recently, paternal diet has also been shown to influence offspring health through effects carried via the sperm that affect post-fertilisation development. Mechanisms underpinning such developmental programming effects remain elusive, although early development of the microvasculature in the heart and pancreas, particularly after exposure of the mother (or father) to a protein restricted diet, has been proposed as one mechanism linking early diet to perturbed adult function. In this brief review, we explore the longer-term consequences of maternal and paternal protein intakes on the progeny. Using evidence from relevant animal models, we illustrate how protein malnutrition may ‘programme’ lifelong health and disease outcomes, especially in relation to pancreatic function and insulin resistance, and cardiac abnormalities

    Multiple genetic associations with Irish wolfhound dilated cardiomyopathy

    Get PDF
    Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH

    Role of NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 in clear cell renal cell carcinoma

    Get PDF
    PURPOSE We delineated the functions of the HIF1α target NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) in ccRCC and characterized NDUFA4L2 as a novel molecular target for ccRCC treatment. EXPERIMENTAL DESIGN We evaluated normal kidney and ccRCC patient microarray and RNAseq data from Oncomine and The Cancer Genome Atlas (TCGA) for NDUFA4L2 mRNA levels and the clinical implications of high NDUFA4L2 expression. Additionally, we examined normal kidney and ccRCC patient tissue samples, human ccRCC cell lines, and murine models of ccRCC for NDUFA4L2 mRNA and protein expression. Utilizing shRNA, we performed NDUFA4L2 knockdown experiments and analyzed the proliferation, clonogenicity, metabolite levels, cell structure, and autophagy in ccRCC cell lines in culture. RESULTS We found that NDUFA4L2 mRNA and protein are highly expressed in ccRCC samples but undetectable in normal kidney tissue samples, and that NDUFA4L2 mRNA expression correlates with tumor stage and lower overall survival. Additionally, we demonstrated that NDUFA4L2 is a HIF1α target in ccRCC and that NDUFA4L2 knockdown has a profound anti-proliferative effect, alters metabolic pathways, and causes major stress in cultured RCC cells. CONCLUSIONS Collectively, our data show that NDUFA4L2 is a novel molecular target for ccRCC treatment

    Two zinc finger proteins with functions in m6A writing interact with HAKAI

    Get PDF
    The methyltransferase complex (m6A writer), which catalyzes the deposition of N6-methyladenosine (m6A) in mRNAs, is highly conserved across most eukaryotic organisms, but its components and interactions between them are still far from fully understood. Here, using in vivo interaction proteomics, two HAKAI-interacting zinc finger proteins, HIZ1 and HIZ2, are discovered as components of the Arabidopsis m6A writer complex. HAKAI is required for the interaction between HIZ1 and MTA (mRNA adenosine methylase A). Whilst HIZ1 knockout plants have normal levels of m6A, plants in which it is overexpressed show reduced methylation and decreased lateral root formation. Mutant plants lacking HIZ2 are viable but have an 85% reduction in m6A abundance and show severe developmental defects. Our findings suggest that HIZ2 is likely the plant equivalent of ZC3H13 (Flacc) of the metazoan m6A-METTL Associated Complex

    NANOG controls testicular germ cell tumour stemness through regulation of MIR9-2

    Get PDF
    BackgroundTesticular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy.MethodsIn this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing.ResultsFor the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness.ConclusionsThis study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs

    Ki67 assessment in invasive luminal breast cancer: A comparative study between different scoring methods

    Get PDF
    Background: Ki67 reflects the proliferation activity in breast cancer (BC). However, an optimal method for its assessment in clinical settings has yet to be robustly defined. In this study, we compared several methods to score Ki67 to identify a reliable and reproducible method for routine practice.Methods: Sections from luminal BC cohort (n=1662) were immunohistochemically stained with Ki67 and were assessed for the percentage, pattern, and intensity of expression. Ki67 positivity was evaluated using three methods: (i) quantification of Ki67 positive cells among 1000 invasive tumour cells within hotspot, (ii) average estimation of Ki67 within a defined hotspot, and (iii) average estimation of Ki67 positivity within the whole section. Time required for scoring, inter-observer agreement and association with outcome were determined.Results: The mean percentage of Ki67 expression per 1000 cells method was 16%, while the mean value of Ki67 scores using the average estimation within hotspot and whole slide were 14% and 12%, respectively. Quantification of Ki67 positive cells within 1000 cells had the highest degree of consistency between observers, and the highest hazard ratio predicting patient outcome when compared to using different common Ki67 cut-offs, which was independent on the other two methods. Granular pattern of Ki67 expression was associated with poorer outcome as compared to the other patterns.Conclusion: Assessment of Ki67 expression using quantification positive cells among 1000 tumour cells is an optimal method to achieve high reliability and reproducibility. Comment on the predominant Ki67 expression pattern would add prognostic and predictive value in luminal BC
    • …
    corecore