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Abstract A major constraint on the evolution of large body sizes in animals is an increased risk

of developing cancer. There is no correlation, however, between body size and cancer risk. This

lack of correlation is often referred to as ’Peto’s Paradox’. Here, we show that the elephant

genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy

number occurred coincident with the evolution of large body sizes, the evolution of extreme

sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant

(Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are

transcribed and likely translated. While TP53RTGs do not appear to directly function as

transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA

damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These

results suggest that an increase in the copy number of TP53 may have played a direct role in the

evolution of very large body sizes and the resolution of Peto’s paradox in Proboscideans.

DOI: 10.7554/eLife.11994.001

Introduction
Lifespan and maximum adult body size are fundamental life history traits that vary considerably

between species (Healy et al., 2014). The maximum lifespan among vertebrates, for example,

ranges from over 211 years in the bowhead whale (Balaena mysticetus) to only 59 days in the pygmy

goby (Eviota sigillata) whereas body sizes ranges from 136,000 kg in the blue whale (Balaenoptera

musculus) to 0.5 g in the Eastern red-backed salamander (Plethodon cinereus) (Healy et al., 2014).

Similar to other life history traits, such as body size and metabolic rate or body size and age at matu-

ration, body size and lifespan are strongly correlated such that larger species tend to live longer

than smaller species (Figure 1A). While abiotic and biological factors have been proposed as major

drivers of maximum body size evolution in animals, maximum body size within tetrapods appears to

be largely determined by biology (Smith et al., 2010; Sookias et al., 2012). Mammals, for example,

likely share biological constraints on the evolution of very large body sizes with rare breaks in those

constraints underlying the evolution of gigantism in some lineages (Sookias et al., 2012), such as

Proboscideans (elephants and their and extinct relatives), Cetaceans (whales), and the extinct horn-

less rhinoceros Paraceratherium (‘Walter’).
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eLife digest As time passes, healthy cells are more likely to become cancerous because more

and more damaging mutations accumulate in the cell’s DNA. Assuming that all cells have a similar

risk of acquiring mutations, larger and longer-lived animals – like elephants – should have a higher

risk of cancer than smaller, shorter-lived animals – like mice. However, there does not appear to be

any link between the size of an animal and its risk of developing cancer. Consequently, a key

question in cancer biology is how very large animals protect themselves against these diseases.

One gene that is often damaged during an animal’s lifetime is called TP53. This gene normally

produces a tumor suppressor protein that senses when DNA is damaged or a cell is under stress and

either briefly slows the cell’s growth while the damage is repaired or triggers cell death if the stress

is overwhelming. One way that large animals could reduce their risk of cancer is to have extra copies

of TP53 or other genes that encode tumor suppressor proteins.

Here Sulak et al. used an evolutionary genomics approach to study TP53 in 61 animals of various

sizes, including several large animals such as African elephants and Minke whales. All of the animals

studied had at least one copy of TP53, and several had a few extra copies, known as TP53

retrogenes. African elephants – the largest living land mammal – had more retrogenes than any of

the others with 19 in total. To investigate why African elephants have so many TP53 retrogenes,

Sulak et al. also analyzed DNA from Asian elephants and several other closely related, but now

extinct species, including the woolly mammoth. As expected, as species evolved larger body sizes

they also evolved more TP53 retrogenes.

Further experiments indicate that several of the TP53 retrogenes in African elephants are likely to

be able to produce the tumor suppressor protein and that they contribute to elephant cells being

better equipped to deal with DNA damage. The next step following on from this work will be to find

out exactly how TP53 retrogenes help to protect animals from cancer.

DOI: 10.7554/eLife.11994.002

Figure 1. Body size evolution in vertebrates. (A) Relationship between body mass (g) and lifespan (years) among 2556 vertebrates. Blue line shows the

linear regression between log (body mass) and log (lifespan), R2 = 0.32. (B) Body size comparison between living (African and Asian elephants) and

extinct (Steppe mammoth) Proboscideans, Cetaceans (Minke whale), and the extinct hornless rhinoceros Paraceratherium (‘Walter’), and humans.

DOI: 10.7554/eLife.11994.003
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A major constraint on the evolution of large body sizes in animals is an increased risk of develop-

ing cancer. If all cells have a similar risk of malignant transformation and equivalent cancer suppres-

sion mechanisms, organism with many cells should have a higher risk of developing cancer than

organisms with fewer cells; Similarly organisms with long lifespans have more time to accumulate

cancer-causing mutations than organisms with shorter lifespans and therefore should be at an

increased risk of developing cancer, a risk that is compounded in large bodied, long-lived organisms

(Cairns, 1975; Caulin and Maley, 2011; Doll, 1971; Peto, 2015; Peto et al., 1975). There are no

correlations, however, between body size and cancer risk or lifespan and cancer risk across species

(Leroi et al., 2003), this lack of correlation is often referred to as ‘Peto’s Paradox’ (Caulin and

Maley, 2011; Peto et al., 1975). Epidemiological studies in wild populations of Swedish roe deer

(Capreolus capreolus) and beluga whales (Delphinapterus leucas) in the highly polluted St. Lawrence

estuary, for example, found cancer accounted for only 2% (Aguirre et al., 1999) and 27%

(Martineau et al., 2002) of mortality, respectively, much lower than expected given body size of

these species (Caulin and Maley, 2011).

Among the mechanisms large, long lived animals may have evolved that resolve Peto’s paradox

are a decrease in the copy number of oncogenes, an increase in the copy number of tumor suppres-

sor genes (Caulin and Maley, 2011; Leroi et al., 2003; Nunney, 1999), reduced metabolic rates

leading to decreased free radical production, reduced retroviral activity and load

(Katzourakis et al., 2014), increased immune surveillance, and selection for ’cheater’ tumors that

parasitize the growth of other tumors (Nagy et al., 2007), among many others. Naked mole rats

(Heterocephalus glaber), for example, which have very long lifespans for a small-bodied organism

evolved cells with extremely sensitive contact inhibition likely acting as a constraint on tumor growth

and metastasis (Seluanov et al., 2009; Tian et al., 2013). Similarly long-lived blind mole rats (Splanx

sp.) evolved an enhanced TP53-signaling and necrotic cell death mechanisms that also likely con-

strains tumor growth (Ashur-Fabian et al., 2004; Avivi et al., 2007; Avivi et al., 2005;

Gorbunova et al., 2012; Manov et al., 2013). Thus, while some of the mechanisms that underlie

cancer resistance in small, long-lived mammals have been identified, the mechanisms by which large

bodied animals evolved enhanced cancer resistance are unknown.

Here we use evolutionary genomics and comparative cell biology to explore the mechanisms by

which elephants, the largest extant land mammal (Figure 1B), have evolved enhanced resistance to

cancer. We found that the elephant genome encodes a single TP53 gene and 19 TP53 retrogenes,

several of which are transcribed and translated in elephant tissues. Comparison of the African and

Asian elephant TP53 gene copy number with the copy number in the genome of the extinct Ameri-

can mastodon, woolly mammoth, and Columbian mammoth indicates that copy number increased

relatively rapidly coincident with the evolution of large body-sizes in the Proboscidean lineage.

Finally, we show that elephant cells have an enhanced response to DNA-damage that is mediated

by a hyperactive TP53 signaling pathway and that this augmented TP53 signaling is dependent upon

TP53 retrogenes and can be transferred to the cells of other species through exogenous expression

of elephant TP53 retrogenes. These results suggest that the origin of large body sizes, long life-

spans, and enhanced cancer resistance in the elephant lineage evolved at least in part through rein-

forcing the anti-cancer mechanisms of the major ‘guardian of the genome’ TP53.

Results

Expansion of the TP53 repertoire in proboscideans
We characterized TP53 copy number in 61 Sarcopterygians (Lobe-finned fishes) with draft or com-

pleted genomes, including large, long-lived mammals such as the African elephant (Loxodonta afri-

cana), Bowhead (Balaena mysticetus) and Minke (Balaenoptera acutorostrata scammoni) whales. We

found that all Sarcopterygian genomes encoded a single TP53 gene and that some lineages also

contained a few TP53 retrogenes (TP53RTG), including marsupials, Yangochiropteran bats, and

Glires, in which ‘processed’ TP53 pseudogenes have previously been reported (Ciotta et al., 1995;

Czosnek et al., 1984; Hulla, 1992; Tanooka et al., 1995; Weghorst et al., 1995; Zakut-

Houri et al., 1983). We also identified a single TP53RTG gene in the lesser hedgehog tenrec (Echi-

nops telfairi), which had been previously reported (Belyi et al., 2010), rock hyrax (Procavia capensis),
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and West Indian manatee (Trichechus manatus). The African elephant genome, however, encoded

19 TP53RTG genes (Figure 2A), 14 of which retain potential to encode truncated proteins (Table 1).

To trace the expansion of TP53RTG gene family in the Proboscidean lineage with greater phylo-

genetic resolution, we used three methods to estimate the minimum (1:1 orthology), average (nor-

malized read depth), and maximum (gene tree reconciliation) TP53/TP53RTG copy number in the

Asian elephant (Elephas maximus), extinct woolly (Mammuthus primigenius) and Columbian (Mam-

muthus columbi) mammoths, and the extinct American mastodon (Mammut americanum) using

Figure 2. Expansion of the TP53RTG gene repertoire in Proboscideans. (A) TP53 copy number in 61 Sarcopterygian (Lobe-finned fish) genomes. Clade

names are shown for lineages in which the genome encodes more than one TP53 gene or pseudogene. (B) Estimated TP53/TP53RTG copy number

inferred from complete genome sequencing data (WGS, purple), 1:1 orthology (green), gene tree reconciliation (blue), and normalized read depth from

genome sequencing data (red). Whiskers on normalized read depth copy number estimates show the 95% confidence interval of the estimate.

DOI: 10.7554/eLife.11994.004

The following figure supplement is available for figure 2:

Figure supplement 1. Reconciled TP53/TP53RTG gene trees.

DOI: 10.7554/eLife.11994.005
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existing whole genome sequencing data (Enk et al., 2014, 2013; Rohland et al., 2010;

Wilkie et al., 2013). As expected, we identified a single canonical TP53 gene in these species and

estimated the TP53RTG copy number in the Asian elephant genome to be 12–17, approximately 14

in both the Columbian and woolly mammoth genomes, and 3–8 in the 50,000–130,000 year old

American mastodon genome (Figure 2Band Figure 2—figure supplement 1). These data indicate

that large-scale expansion of the TP53RTG gene family occurred in the Proboscidean lineage and

suggest that TP53RTG copy number was lower in ancient Proboscideans such as the mastodon,

which diverged from the elephant lineage ~ 25 MYA (Rohland et al., 2010), than in recent species

such as elephants and mammoths.

The TP53RTG repertoire expanded through repeated segmental
duplications
Several mechanisms may have increased the TP53RTG copy number in the Proboscidean lineage

including serial retrotransposition from the TP53 gene, serial retrotransposition from the TP53 and

one or more daughter transcribed retrogenes, repeated segmental duplications of chromosomal loci

containing TP53RTG genes, or some combination of these mechanisms. Consistent with copy num-

ber expansion through a single retrotransposition event followed by repeated rounds of segmental

duplication, we found that each TP53RTG retrogene was flanked by nearly identical clusters of trans-

posable elements (Figure 3A) and embedded within a large genomic region with greater than 80%

sequence similarity (Figure 3B). Next we used progressiveMAUVE to align the 18 elephant contigs

containing TP53RTG retrogenes and found that they were all embedded within large locally collinear

blocks that span nearly the entire length of some contigs (Figure 3C), as expected for segmental

duplications.

Table 1. Summary information for African elephant TP53/TP53RTG genes.

Gene Id ENSEMBL Id
Scaffold
(loxAfr3)

Chromosome
(loxAfr4)

Coding
potential

ORF
size

TP53 ENSLAFG00000007483 47 Chr 11 Yes 392aa

TP53RTG1 ENSLAFG00000025553 175 Unmapped No N/A

TP53RTG2 N/A 217 Unmapped Yes 134aa

TP53RTG3 ENSLAFG00000027474 406 Unmapped Yes 79aa

TP53RTG4 N/A 627 Unmapped Yes 134aa

TP53RTG5 ENSLAFG00000027348 221 Unmapped Yes 162aa

TP53RTG6 N/A 76 Chr 27 Yes 123aa

TP53RTG7 N/A 208 Unmapped No N/A

TP53RTG8 ENSLAFG00000027820 294 Unmapped Yes 210aa

TP53RTG9 ENSLAFG00000027669 786 Unmapped No N/A

TP53RTG10 ENSLAFG00000030555 221 Unmapped Yes 210aa

TP53RTG11 N/A 281 Yes 203aa

TP53RTG12 ENSLAFG00000028299 825 Unmapped Yes 180aa

TP53RTG13 ENSLAFG00000032042 458 Unmapped No N/A

TP53RTG14 ENSLAFG00000026238 928 Unmapped Yes 210aa

TP53RTG15 ENSLAFG00000027365 656 Unmapped Yes 210aa

TP53RTG16 ENSLAFG00000030880 378 Unmapped No N/A

TP53RTG17 ENSLAFG00000028692 552 Unmapped Yes 111aa

TP53RTG18 N/A 498 Unmapped Yes 111aa

TP53RTG19 ENSLAFG00000032258 342 Unmapped Yes 210aa

DOI: 10.7554/eLife.11994.006
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TP53RTG copy number expansion is correlated with proboscidean body
size
Our observation that TP53RTG genes expanded through segmental duplications suggests they may

have a tree-like phylogenetic history that preserves information about when in the evolution of Pro-

boscideans the duplicates occurred. Therefore we assembled a dataset of TP53/TP53RTG orthologs

from 65 diverse mammals and jointly inferred the TP53/TP53RTG gene tree and duplication dates in

a Bayesian framework to determine if TP53/TP53RTG copy number was correlated with body size

evolution in Proboscideans. For comparison, we also inferred the phylogenetic history of TP53/

TP53RTG genes using maximum likelihood and an additional Bayesian method. We found all phylo-

genetic inference methods inferred that the TP53RTG genes from elephant, hyrax, and manatee

formed a well-supported sister clade to the canonical genes from these species, whereas the tenrec

TP53 and TP53RTG genes formed a separate well-supported clade (Figure 4A and Figure 4—figure

supplement 1). These data indicate that retrotransposition of TP53 occurred independently in ten-

recs and in the elephant, hyrax, and manatee stem-lineage (Paenungulata), followed by expansion of

TP53RTG genes in the Proboscidean lineage.

Based on our time-calibrated phylogeny, we inferred that the initial retrotransposition of the

TP53 gene in the Paenungulata stem-lineage occurred approximately 64 MYA (95% HPD = 62.3–

66.2 MYA; Figure 4A). This was followed by a period of ~25 million years during which no further

retrotranspositions or segmental duplications were fixed in the genome, however, the TP53RTG
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The following figure supplement is available for figure 4:

Figure supplement 1. TP53/TP53RTG gene trees.

DOI: 10.7554/eLife.11994.009
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gene family rapidly expanded after ~40 MYA (95% HPD = 30.8–48.6 MYA; Figure 4A). To correlate

TP53/TP53RTG copy number and the origin of large body sizes in Proboscideans we estimated

TP53/TP53RTG copy number through time and gathered data on ancient Proboscidean body sizes

from the literature (Evans et al., 2012; Smith et al., 2010). We found that the increase in TP53/

TP53RTG copy number in the Proboscidean lineage and Proboscidean body size evolution closely

mirrored each other (Figure 4B).

TP53RTG12 is transcribed from a transposable element derived
promoter
If expansion of the TP53RTG gene repertoire played a role in the resolution of Peto’s paradox dur-

ing the evolution of large bodied Proboscideans, then one or more of the TP53RTG genes should

be transcribed. Therefore we generated RNA-Seq data from Asian elephant dermal fibroblasts, Afri-

can elephant term placental villus and adipose tissue, and used previously published RNA-Seq data

from Asian elephant PBMCs (Reddy et al., 2015) and African elephant fibroblasts (Cortez et al.,

2014) to determine if TP53RTG genes were transcribed. We found that the TP53 and TP53RTG12

genes were robustly transcribed in all samples, whereas TP53RTG3 and TP53RTG18 transcripts were

much less abundant (Figure 5A). To confirm that the African and Asian elephant TP53RTG genes

were transcribed, we designed a set of PCR primers specific to the TP53 and TP53RTG genes that

flank a diagnostic 15–30 bp deletion in TP53RTG genes (Figure 5—figure supplement 1) and used

RT-PCR to assay for expression in Elephant fibroblast cDNA generated from DNase treated RNA.

Consistent with transcription of the TP53RTG genes, we amplified PCR products at the expected

size for the TP53 and TP53RTG transcripts but did not amplify PCR products from negative control

(no reverse transcriptase) samples (Figure 5B). Sanger sequencing of the cloned PCR products con-

firmed transcription of TP53RTG12 and TP53RTG18/19 (Figure 5—figure supplement 1) in African

elephant and TP53RTG12 and TP53RTG13 in Asian elephant fibroblast. We note that we used a

Poly-T primer for cDNA synthesis, thus the amplification of TP53RTG transcripts indicates that these

transcripts are poly-adenylated.

Most retrogenes lack native regulatory elements such as promoters and enhancers to initiate tran-

scription, thus transcribed TP53RTG genes likely co-opted existing regulatory elements or evolved

regulatory elements de novo. To identify putative transcriptional start sites and promoters of the

highly expressed TP53RTG12 gene we used geneid and GENESCAN to computationally predict

exons in the African elephant gene and mapped the African and Asian elephant fibroblast RNA-Seq

data onto scaffold_825, which encodes the TP53RTG12 gene. We found that both computational

methods predicted an exon ~2 kb upstream of the ENSEMBL annotated TP53RTG12 gene, within an

RTE-type non-LTR retrotransposon (RTE1_LA) that we annotated as Afrotherian-specific (Figure 5C).

Consistent with this region encoding a transcribed 5’-UTR, a peak of reads mapped within the pre-

dicted 5’-exon and within the RTE1_LA retrotransposon (Figure 5C).

We attempted to identify the transcription start site of the TP53RTG12 gene using several 5’-

RACE methods, however, we were unsuccessful in generating PCR products from either African Ele-

phant fibroblast or placenta cDNA, or Asian elephant fibroblast cDNA. Therefore, we designed a set

of 34 PCR primers tiled across the region of scaffold_825 that encodes the TP53RTG12 gene and

used these primers to amplify PCR products from African and Asian Elephant fibroblast cDNA gen-

erated from DNase treated RNA. We then reconstructed the likely TP53RTG12 promoter, transcrip-

tion start site, and exon-intron structure from the pattern of positive PCR products. These data

suggest that the major transcription initiation site of TP53RTG12 is located within a RTE1_LA class

transposable element (Figure 5C).

Next we tested the ability of the African and Asian elephant RTE1_LA elements and the RTE1_LA

consensus sequence (as a proxy for the ancestral RTE1_LA sequence) to function as a promoter in

transiently transfected African and Asian elephant fibroblasts when cloned into the promoterless

pGL4.10[luc2] luciferase reporter vector. We found that the African and Asian elephant RTE1_LA ele-

ments increased luciferase expression 3.03-fold (t-test, p=2.41 � 10–8) and 1.37-fold (t-test,

p=2.60 � 10–4), respectively, compared to empty vector controls (Figure 5D). However, luciferase

expression from the pGL4.10[luc2] vector containing the RTE1_LA sequence was not significantly dif-

ferent than the empty vector control in either Asian (0.96-fold; t-test, p=0.61) or African elephant

fibroblasts (0.95-fold; t-test, p=0.37; Figure 5D). These data indicate that transcription of
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Figure 5. TP53RTG12 is transcribed and translated. (A) Transcription of elephant TP53 and TP53RTG genes in dermal fibroblasts, white adipose, and
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estimates from ‘end-to-end’ read mapping and gray bars shown ‘local’ read mapping. (B) qRT-PCR products generated Asian (left, blue sqaure) and

African (right, light blue square) elephant fibroblast cDNA using primers specific to TP53 and TP53RTG12. cDNA was generated from DNaseI-treated

RNA. No reverse transcriptase (no RT) controls for each qPCR reaction are shown, end point PCR products are shown. (C) Coverage of mapped reads
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location of TP53RTG12 exons predicted from geneid and GENESCAN are shown in blue introns are shown as lines with arrows indicating the direction

of transcription. Gray bars show the location of transposable elements around the TP53RTG12 gene, darker gray indicates high sequence similarity to

the consensus of each element. PCR tiles across this region are shown for African (Lox.) and Asian (Ele.) elephants, PCR primers generating amplicons
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scaffold_825. (D) Relative luciferase (Luc.) expression in Asian and African fibroblasts transfected with either the promoterless pGL4.10[luc2] luciferase

Figure 5 continued on next page
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TP53RTG12 likely initiates within a RTE1_LA-derived promoter, but that the ability of this RTE1_LA

element to function as a promoter is not an ancestral feature of RTE1_LA elements.

Elephant cells likely express TP53RTG proteins and numerous isoforms
of TP53
To determine if TP53RTG transcripts are translated, we treated African elephant, Asian elephant,

and hyrax cells with 50 J/m2 UV-C (to stabilize TP53) and the proteasome inhibitor MG-132 (to block

protein degradation), and assayed for TP53/TP53RTG proteins by Western blotting total cell protein

with a polyclonal TP53 antibody (FL-393) that we demonstrated recognizes Myc-tagged TP53RTG12.

We identified bands in both African and Asian elephant and hyrax total cell protein at the expected

size for the full length p53, D133 p53b/g, and p53y-like isoforms of the TP53 protein (Khoury and

Bourdon, 2010) as well as high molecular weight bands corresponding to previously reported SDS

denaturation resistant TP53 oligomers (Cohen et al., 2008; Ottaggio et al., 2000) and (poly)ubiqui-

tinated TP53 congugates (Sparks et al., 2014) (Figure 5E). We also identified an elephant-specific

band at the expected size for the TP53RTG12 (19.6 kDa) and TP53RTG19 (22.3 kDa) proteins, sug-

gesting that the TP53RTG12 and TP53RTG19 transcripts are translated in elephant fibroblasts

(Figure 5Eand Figure 5—figure supplement 2).

Elephant cells have an enhanced TP53-dependent DNA-damage
response
Our observation that TP53RTG genes are expressed suggests that elephant cells may have an

altered TP53 signaling system compared to species without an expanded TP53/TP53RTG gene rep-

ertoire. To directly test this hypothesis we transiently transfected primary African elephant, Asian

elephant, South African Rock hyrax (Procavia capensis capensis), East African aardvark (Orycteropus

afer lademanni), and Southern Three-banded armadillo (Tolypeutes matacus) dermal fibroblasts with

a luciferase reporter vector containing two TP53 response elements (pGL4.38[luc2p/p53 RE/Hygro])

and Renilla control vector (pGL4.74[hRluc/TK]). Next we used a dual luciferase reporter assay to

measure the activation of the TP53 pathway in response to treatment with three DNA damage

inducing agents (mitomycin C, doxorubicin, or UV-C) or nutlin-3a, which inhibits the interaction

between MDM2 and TP53 and thus promotes TP53 signaling. We found that elephant cells generally

up-regulated TP53 signaling in response to lower doses of each drug and UV-C than closely related

species without an expanded TP53 gene repertoire (Figure 6A), indicating elephant cells have

evolved an enhanced TP53 response.

To determine the consequences of an enhanced TP53 response we treated primary African and

Asian elephant, hyrax, aardvark, and armadillo dermal fibroblasts with mitomycin C, doxorubicin,

nutlin-3a, or UV-C and measured cell viability (live-cell protease activity), cytotoxicity (dead-cell pro-

tease activity), and the induction apoptosis (caspase-3/7 activation) using an ApoTox-Glo Triplex

assay. Consistent with the results from the luciferase assay, we found that lower doses of mitomycin

C or doxorubicin induced apoptosis in elephant cells than the other species (Figure 6B) and that the

magnitude of the response was greater in elephant than other species (Figure 6A). Similarly UV-C

exposure generally induced more elephant cells to undergo apoptosis than other species

(Figure 6A). A striking exception to this trend was the response of elephant cells to the MDM2

Figure 5 continued

reporter vector (empty vector), pGL4.10 containing the RTE_LA consensus sequences (Consensus), pGL4.10 containing the RTE_LA from Asian elephant

(Ele. RTE_LA), or pGL4.10 containing the RTE_LA from African elephant (Lox. RTE_LA). Results are shown as fold difference in Luc. expression

standardized to empty vector and Renilla controls. n = 16, Wilcoxon P-values. (E) Western blot of total cell protein isolated from South African Rock

hyrax, Asian elephant (Elephas), and African elephant (Loxodona) dermal fibroblasts. �, control cells. +, cells treated with 50 J/m2UV-C and the

proteasome inhibitor MG-132. The name and predicted molecular weights of TP53 isoforms are shown.

DOI: 10.7554/eLife.11994.010

The following figure supplements are available for figure 5:

Figure supplement 1. PCR and Sanger sequencing confirm TP53RTG12 is transcribed in elephant fibroblasts.

DOI: 10.7554/eLife.11994.011

Figure supplement 2. Unedited Western blots shown in Figure 5E.

DOI: 10.7554/eLife.11994.012
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antagonist nutlin-3a, which elicited a strong TP53 transcriptional response (Figure 6A) but did not

induce apoptosis (Figure 6B). Thus we conclude that elephant cells generally upregulate TP53 sig-

naling and apoptosis at lower levels of DNA-damage than other species, but are resistant to nutlin 3

a induced apoptosis.

TP53RTG genes are required for enhanced TP53 signaling and DNA-
damage responses
To test if TP53RTG genes are necessary for the enhanced TP53-dependent DNA-damage response,

we cotransfected African elephant fibroblasts with the pGL4.38[luc2p/p53 RE/Hygro] luciferase

reporter vector, the pGL4.74[hRluc/TK] Renilla control vector, and either a TP53RTG-specific siRNA

or a scrambled siRNA control (Figure 7A). Next we used a dual luciferase reporter assay to measure

the activation of the TP53 pathway in response to treatment mitomycin C, doxorubicin, UV-C, or nut-

lin-3a. As expected given our previous results, we found that African elephant fibroblasts transfected

with control siRNA induced TP53 signaling in response to each treatment (Figure 7A). In contrast,

African elephant fibroblasts transfected with TP53RTG-specific siRNA had significantly lower lucifer-

ase expression, and thus reduced TP53 signaling, in response to either DNA-damaging agents (mito-

mycin C, doxorubicin, UV-C) or MDM2 antagonism (nutlin-3a). TP53RTG knockdown also elevated

baseline TP53 signaling (Figure 7B). These data suggest that TP53RTG proteins have at least two

distinct functions, inhibiting TP53 signaling in the absence of inductive signals and potentiation of

TP53 signaling after the induction of DNA damage.
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Figure 6. Elephant cells have enhanced TP53 signaling and are hyper-responsive to DNA damage. (A) Relative luciferase (Luc.) expression in African

elephant, Asian elephant, hyrax, aardvark, and armadillo fibroblasts transfected with the pGL4.38[luc2p/p53 RE/Hygro] reporter vector and treated with

either mitomycin c, doxorubicin, nutlin-3a, or UV-C. Data are shown as fold difference in Luc. expression 18 hr after treatment standardized to species

paired empty vector and Renilla controls. n = 12, mean±SD. (B) Relative capsase-3/7 (Cas3/7) activity in African elephant, Asian elephant, hyrax,

aardvark, and armadillo treated with either mitomycin c, doxorubicin, nutlin-3a, or UV-C. Data are shown as fold difference in Cas3/7 activity 18 hr after

treatment standardized to species paired untreated controls. n = 12, mean±SD.
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TP53RTG12 enhances TP53 signaling and DNA-damage responses via a
transdominant mechanism
To test if TP53RTG12 is sufficient to mediate enhanced TP53 signaling and DNA-damage responses

we synthesized the African elephant TP53RTG12 gene (with mouse codon usage) and cloned it into

the mammalian expression vector pcDNA3.1(+)/myc-His. We then transiently transfected mouse

3T3-L1 cells with the TP53RTG12 pcDNA3.1(+)/myc-His expression vector and used the pGL4.38

[luc2P/p53 RE/Hygro] reporter system and ApoToxGlo assays to monitor activation of the TP53 sig-

naling pathway and the induction of apoptosis in response to treatment with mitomycin C, doxorubi-

cin, nutlin-3a, or UV-C. We found that heterologous expression of TP53RTG12 in mouse 3T3-L1 cells

dramatically augmented luciferase expression from the pGL4.38[luc2P/p53 RE/Hygro] reporter vec-

tor in response to each treatment (Figure 8A) compared to empty vector controls, consistent with a

enhancement of the endogenous TP53 signaling pathway. Similarly, expression of TP53RTG12 signif-

icantly augmented the induction of apoptosis in response to each treatment although the effect sizes

were modest (Figure 8B). These data indicate that TP53RTG12 acts via a trans-dominant mechanism

to enhance the induction of apoptosis by endogenous TP53 and that TP53RTG12 is sufficient to

recapitulate at least some of the enhanced sensitivity of elephant cells to DNA damage. Further-

more, our observation that transfection with the TP53RTG12 pcDNA3.1(+)/myc-His expression vec-

tor augments TP53 signaling and apoptosis suggests that the TP53RTG12 protein rather than

transcript is responsible for these effects because the TP53RTG12 transgene was synthetized with

mouse codon usage and is only 73% (394/535 nts) identical to the elephant TP53RTG12 gene.

TP53RTG proteins are unlikely to directly regulate TP53 target genes because they lack critical

residues required for nuclear localization, tetramerization, and DNA-binding (Figure 9A). Previous

studies, for example, have shown the TP53 mutants lacking the tetramerization domain and C-termi-

nal tail are unable to bind DNA or transactivate luciferase expression from a reporter vector contain-

ing TP53 response elements (Kim et al., 2012). Similarly the p53	 isoform, which is truncated in the

middle of the DNA binding domain and lacks the nuclear localization signal and oligomerization

domain, is unable to bind DNA and is transcriptionally inactive (Senturk et al., 2014). Unexpectedly,

we found that the GFP-tagged TP53RTG12 protein was both cytoplasmic and nuclear localized in

transfected African elephant fibroblasts (Figure 9B), suggesting it interacts with another nuclear

localized protein to enter the nucleus. Despite relatively strong nuclear localization, however, cells

co-transfected with the TP53RTG12 pcDNA3.1(+)/myc-His expression vector and the pGL4.38[luc2P/
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Figure 7. TP53RTG genes are required for enhanced TP53 signaling and DNA-damage responses. (A) Expression of TP53RTG and TP53 transcripts in

African elephant fibroblasts treated with an siRNA to knockdown the expression of TP53RTG genes (red) or a scrambled (Control) siRNA (blue). Results

are shown as fold-change in TP53RTG and TP53 transcript abundance relative to transcript abundance in scrambled siRNA control cells. The TP53RTG

siRNA efficiently reduces the expression of TP53RTG transcripts, but does not reduce the expression of TP53 transcripts. (B) Relative luciferase (Luc.)

expression in African elephant fibroblasts transfected with the pGL4.38[luc2p/p53 RE/Hygro] reporter vector and treated with an siRNA to knockdown

the expression of TP53RTG genes (red) or a scrambled (negative control) siRNA (blue), and treated with either mitomycin c, doxorubicin, nutlin-3a, or

UV-C. Data is shown as fold difference in Luc. expression 18 hr after treatment standardized to Renilla controls and no treatment. n > 4, mean±SD. **,

Wilcoxon p>0.01. ***, Wilcoxon p>0.001.
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p53 RE/Hygro] luciferase reporter vector did not have elevated luciferase expression compared to

controls, suggesting that TP53RTG12 is transcriptionally inactive or requires a cofactor to regulate

target genes (Figure 9C).

A model for TP53RTG function – decoy or guardian?
While TP53RTG12 does not appear to directly regulate gene expression, many of the TP53RTG pro-

teins (including TP53RTG12) retain the MDM2 interaction motif in the transactivation domain and

dimerization sites in the DNA binding domain (Figure 9A). These data suggest at least two non-

exclusive models of TP53RTG action: (1) TP53RTG proteins may act as ‘decoys’ for the MDM2 com-

plex allowing the canonical TP53 protein to escape negative regulation (Figure 10A); and (2)

TP53RTG proteins may protect canonical TP53 from MDM2 mediated ubiqutination, which requires

tetramerization (Kubbutat et al., 1998; Maki, 1999), by dimerizing with canonical TP53 and thereby

preventing the formation of tetramers (Figure 10F).

The decoy model depends on the ability of TP53RTG proteins to physically interact with MDM2.

Previous crystallographic studies of the TP53/MDM2 interaction have shown that a trio of residues in

TP53 (F19, W23, and L26) insert deeply into a hydrophobic cleft in MDM2, which stabilizes the inter-

action (Kussie et al., 1996). We identified a W23G substitution in all TP53RTG proteins at a site that

is invariant for tryptophan in TP53 proteins including African and Asian elephant TP53 (Figure 10B),

suggesting that TP53RTG proteins may be unable to physically interact with MDM2. To infer the

structural and functional consequences of the TP53RTG W23G substitution we generated a homol-

ogy model of the elephant TP53RTG12/MDM2 complex using I-TASSER/ModRefiner (Roy et al.,

2010; Xu and Zhang, 2011; Zhang, 2008) and the crystal structure of the MDM2/TP53 dimer as a

template (Kussie et al., 1996). We found that the TP53RTG12 transactivation domain was inferred
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Figure 8. TP53RTG12 enhances TP53 signaling and DNA-damage responses. (A) Relative luciferase (Luc.) expression in mouse 3T3-L1 cells co-

transfected with either the pGL4.38[luc2P/p53 RE/Hygro] Luc. reporter vector, TP53RTG12 pcDNA3.1(+)/myc-His expression vector, or empty pcDNA3.1

(+)/myc-His and treated with either mitomycin c, doxorubicin, nutlin-3a, or UV-C. Data is shown as fold difference in Luc. expression 18 hr after

treatment standardized to cells transfected with only pGL4.38[luc2P/p53 RE/Hygro] and Renilla controls. n = 12, mean±SD. ***, Wilcoxon p>0.001. (B)

Relative capsase-3/7 (Cas3/7) activity in mouse 3T3-L1 cells transfected with either the TP53RTG12 pcDNA3.1(+)/myc-His expression vector or empty

pcDNA3.1(+)/myc-His and treated with either mitomycin c, doxorubicin, nutlin-3a, or UV-C. Data is shown as fold difference in Cas3/7 activity 18 hr after

treatment standardized to mock transfected. n = 12, mean±SD. ***, Wilcoxon p>0.001.
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to be a short a-helix (Figure 10C) and was very similar to the template structure (RMSD: 1.756),

however, the W23G substitution is predicted to abolish crucial hydrophobic interactions between

the amphipathic a-helix of TP53 and the hydrophobic cleft MDM2. Indeed, three methods

(Pires et al., 2014) inferred that the W23G substitution is destabilizing on the TP53RTG12/MDM2

interaction (mCSM DDG = �2.42, SDM DDG = �5.46, DUET DDG = �2.38) (Figure 10D). To experi-

mentally test for an interaction between TP53RTG12 and MDM2 we transiently transfected HEK-293

cells with the TP53RTG12 pcDNA3.1(+)/myc-His expression vector, immunoprecipitated endoge-

nous human MDM2, and assayed for co-immunoprecipitation of TP53RTG12 by Western blotting.

While we efficiently co-immunoprecipitated endogenous human TP53 we did not co-immunoprecipi-

tate Myc-tagged TP53RTG12 (Figure 10Eand Figure 10—figure supplement 1), consistent with a

lack of interaction between TP53RTG12 and MDM2.

Unlike the decoy model, the guardian model of TP53RTG function depends upon a physical inter-

action between TP53RTG and TP53. The TP53 dimer is stabilized by hydrophobic and polar interac-

tions including a shell of nonpolar interactions formed by P177, H178, M243, and G244 and a

stabilization network next to the nonpolar layer formed by charged residues from the two monomers

(R181, E180, and R174). In addition, several polar and charged residues nearby but not within the

dimerization interface contribute to the stability of the interacting monomers including D184 with

R175, most of which are conserved in TP53RTG proteins (Figure 10G). To infer if derived residues in

the TP53RTG12 dimerization interface might disrupt a physical interaction between TP53RTG12 and

TP53 we generated a homology model of the TP53RTG12/TP53 dimer using I-TASSER/ModRefiner

(Roy et al., 2010; Xu and Zhang, 2011; Zhang, 2008) and the crystal structure of the TP53 tetramer

as a template (Kitayner et al., 2006). We found that the TP53RTG12 dimerization interface was

inferred to be a 2–4 residue a-helix (Figure 10H) that was nearly identical to the template structure

(RMSD: 0.605), suggesting TP53RTG12-specific residues in dimerization interface are unlikely to dis-

rupt the structure of the interface. Unlike the MDM2 interaction site, TP53RTG12-specific substitu-

tions were predicted to maintain intermolecular hydrophobic interactions with TP53 (Figure 10H).

Consistent with maintenance of dimerization potential, the net DDG of the derived amino acid substi-

tutions in the TP53RTG12 dimerization interface were under 2 (Figure 10I). To experimentally test

for an interaction between TP53RTG12 and TP53 we transiently transfected HEK-293 cells with the

TP53RTG12 pcDNA3.1(+)/myc-His expression vector, immunoprecipitated TP53RTG12 with a Myc

antibody, and assayed for co-immunoprecipitation of endogenous human TP53 by Western blotting.

We found that Myc-tagged TP53RTG12 efficiently co-immunoprecipitated endogenous human TP53
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hydrophobic residues that mediate the interaction with TP53 as spheres, TP53 in gray with W23 as a sphere, and TP53RTG12 shown in blue with G23 as

a sphere. (D) Predicted effects of the W23G substitution (DDG) on the stability of the MDM2/TP53RTG12 interaction estimated with mCSM, SDM, and

DUET. (E) HEK-293 cells were transiently transfected with the TP53RTG12 pcDNA3.1(+)/myc-His expression vector and total cell protein

immunoprecipitated with an a-MDM2 antibody. Co-immunoprecipitation of Myc-tagged TP53RTG12 and TP53 were assayed by Western blotting with
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Figure 10 continued on next page
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(Figure 10J). These data are consistent with a physical interaction between TP53RTG12 and TP53

but not between TP53RTG12 and MDM2, supporting the guardian model.

Discussion
A major developmental and life history constraint on the evolution of large body sizes and long life-

spans in animals is an increased risk of developing cancer. There is no correlation, however, between

body size or lifespan and cancer risk because large and long-lived organisms have evolved enhanced

cancer suppression mechanisms that delay the development of cancer until post-reproduction (when

selection generally cannot act). This simple evolutionary rational demands mechanistic explanations

(Peto, 2015), which have thus far been elusive. Here we show that the master tumor suppressor

TP53, which is essential for preventing cancer because it triggers proliferative arrest and apoptosis

in response to a variety of stresses such as DNA damage, was retroduplicated in the Paenungulate

stem-lineage and rapidly increased in copy number through repeated segmental duplications during

with the evolution of Proboscideans. The expansion of the TP53RTG gene family occurred coincident

with the evolution of large body sizes and enhanced sensitivity of elephant cells to genotoxic stress,

suggesting that Proboscideans resolved Peto’s paradox at least in part through the evolution of aug-

mented TP53 signaling.

Comparison to previous studies of elephant TP53
Previous studies have suggested that the TP53 gene family expanded in the elephant lineage

(Abegglen et al., 2015; Caulin and Maley, 2011; Caulin et al., 2015), however, these studies did

not establish the mechanism by which the TP52RTG gene family expanded. Several potential mecha-

nisms could have increased TP52RTG copy number, including serial (independent) retrotranspostion

from the parent TP53 gene, a single retrotranspostion event followed by repeated rounds of seg-

mental duplication of TP52RTG containing loci, retrotransposition of expressed TP52RTG genes, or

some combination of these models. Each model is associated with a distinct set of genomic ‘finger-

prints’. If copy number expanded through independent retrotransposition events, for example,

TP53RTG encoding regions of the genome will not be homologous whereas the model of a single

retrotranspostion event followed by repeated rounds of segmental duplication predicts that the

TP53RTG encoding loci will be homolgous. Consistent with copy number expansion through a single

retrotransposition event followed by repeated rounds of segmental duplication, we found that flak-

ing regions of each TP52RTG locus were homologous and contained the same unique combination

of transposable elements. Indeed, the 3’-end of each duplicate terminates at a ~5 kb long L1MB5

LINE element suggesting that transposable element mediated recombination may have played a

role in promoting segmental duplication.

If TP53RTG copy number expansion played a causal role in evolution of enhanced cancer resis-

tance in elephants then the gene family must have expanded prior to or coincident with the evolu-

tion of increased body sizes in Proboscideans rather than after the evolution of large bodies but

before the African and Asian elephant lineages diverged ~8 MYA (Rohland et al., 2010, 2007). Thus

dating the expansion of the TP53RTG gene family is essential for determining if TP53RTG genes

played a role in the evolution of enhanced cancer resistance in elephants. Previous studies, however,

did not establish when TP53RTG copy number expanded in the evolution of Proboscideans. Fortu-

nately our observation that copy number expansion occurred through segmental duplications

allowed us to use molecular phylogenetic methods to date each duplication event. These data indi-

cate that the initial TP53RTG retrotransposition event occurred in the Paenungulate stem-

Figure 10 continued

MDM2/TP53RTG12 interaction estimated with mCSM, SDM, and DUET. (J) HEK-293 cells were transiently transfected with the TP53RTG12 pcDNA3.1

(+)/myc-His expression vector and total cell protein immunoprecipitated with an a-Myc antibody. Co-immunoprecipitation of TP53 and MDM2 were

assayed by serial Western blotting with a-Myc, a-TP53, and a-MDM2 antibodies after chemically stripping the blot, respectively.

DOI: 10.7554/eLife.11994.017

The following figure supplement is available for figure 10:

Figure supplement 1. Uncropped Western blots shown in Figure 8B.

DOI: 10.7554/eLife.11994.018
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lineage ~ 64 MYA, followed the rapid expansion after ~40 MYA. We also found that the increase in

TP53RTG copy number occurred coincident with the evolution of large bodies in the Proboscidean

lineage, implicating copy number expansion in the resolution of Peto’s paradox.

While Abegglen et al. (2015) found that elephant and human cells had different sensitivities to

ionizing radiation, their taxon sampling did not allow for polarizing which species was different.

Indeed, their taxon sampling does not allow for a Eutherian out-group. To determine if elephants

have a derived sensitivity to genotoxic stress, we compared the response of fibroblasts from an Afri-

can savannah elephant, an Asian elephant, and closely related out-group species to DNA damage

inducing agents. Our out-group species included the South African Rock hyrax, the closest living rel-

ative of elephants, the East African aardvark, an Afrotherian from the sister lineage of the Paenungu-

lates, and the Southern Three-banded armadillo, an Atlantogenatan from the sister lineage of the

Afrotherians. Our results indicate that elephant cells are particularly sensitive to genotoxic tress, sug-

gesting that this sensitivity evolved coincident with the evolution of large body sizes and an

expanded TP53 gene repertoire in Proboscideans.

An embarrassment of riches?
Our observation that the elephant genome contains 19 TP53RTG genes raises numerous questions:

Do these loci, for example, encode functional genes or pseudogenes and what processes underlie

copy number expansion? Answers to these questions are essential for understanding whether

TP53RTG genes are casually related to the resolution of Peto’s paradox in Proboscideans or if they

are irrelevant relicts of ancient transposition events, like so many other pseudogenes that riddle

mammalian genomes. Unfortunately, it is difficult to answer these questions.

Which TP53RTG loci encode functional genes and which encode pseudogenes is not easy to infer.

Many duplicate genes are preserved because they evolve tissue-specific or developmental-stage

specific expression patterns (subfunctionalization), new functions (neofunctionalization) that resolve

redundancy between duplicates, or reduced expression levels that preserves correct expression dos-

age. Exhaustively characterizing gene expression in elephant tissues is difficult because appropriate

tissue samples are unavailable, therefore we are unable to definitively determine which TP53RTG

loci are transcribed. Our RNA-Seq and RT-PCR/Sanger sequencing data indicate that at least

TP53RTG12, TP53RTG18/19, and TP53RTG13 are transcribed in dermal fibroblasts. Abegglen et al.

(2015) used RT-PCR and Sanger sequencing to show two distinct transcripts were expressed in ele-

phant PBMCs, but they did not assign the loci to which these transcripts correspond. We analyzed

the chromatograms shown in Abegglen et al. Figure 4 and found that the 185 bp product is likely a

transcript from the TP553RTG14 gene and the 201 bp product is likely a transcript from the

TP553RTG5 gene. Thus, our combined data suggest that at least five TP53RTG genes are tran-

scribed. Furthermore we did not observe TP553RTG14 or TP553RTG5 expression in adipose, pla-

centa, or fibroblasts suggesting that the expression of some TP53RTG genes is tissue-specific.

The large number of TP53RTG loci in elephants combined with the observation that only five are

transcribed suggests that this gene family may evolve by a birth and death process, in which new

genes are created by duplication and some duplicates are maintained in the genome whereas others

become nonfunctional or deleted similar to other large genes families such as histones (González-

Romero et al., 2010; Rooney et al., 2002) and venom genes (Lynch, 2007). Under this model selec-

tion acts to maintain a minimal number of functional copies (functional copy number) rather than

total copy number, the increase in total copy number is driven by the total number of loci and the

rates of duplication, loss, and fixation. Thus the overall increase in total TP53RTG copy number may

be a selectively neutral process, driven simply by higher rates of duplication and/or fixation than

loss.

Is TP53RTG12 a decoy, a guardian, or something else?
Our results demonstrate that elephant cells induce TP53 signaling and trigger apoptosis at lower

thresholds of genotoxic stress than closely related species without an expanded TP53 repertoire and

that this reduced sensitivity is dependent upon TP53RTG genes. Furthermore, heterologous expres-

sion of TP53RTG12 in mouse cells was sufficient to augment endogenous TP53 signaling and reca-

pitulate an elephant-like sensitivity to genotoxic stress, indicating that TP53RTGs acts through a

transdominant mechanism. While the mechanism of action is unclear, TP53RTG genes may augment
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TP53 signaling through several non-exclusive mechanisms including functioning as non-coding RNAs

(Poliseno et al., 2010), protein ‘decoys’ for the MDM2 complex that allowing canonical TP53 to

escape negative regulation (Abegglen et al., 2015), and protein ‘guardians’ that protect canonical

TP53 from MDM2 mediated ubiqutination.

Consistent with the guardian model, we found that Myc-tagged TP53RTG12 efficiently co-immu-

noprecipitated with endogenous TP53 but not with endogenous MDM2. The lack of an interaction

between TP53RTG12 and MDM2 likely results from a W23G substitution that is predicted to abolish

a crucial hydrophobic interaction between the amphipathic a-helix of TP53 and the hydrophobic

cleft MDM2. The W23G substitution is found in all TP53RTG proteins but not African and Asian ele-

phant TP53, indicating that it occurred before the expansion of the TP53RTG gene family and likely

prevents interaction of any TP53RTG protein and MDM2. Previous studies have shown that tetrame-

rization of TP53 is required for its efficient MDM2-mediated ubiquitination (Kubbutat et al., 1998;

Maki, 1999), suggesting that TP53RTG proteins may dimerize with and protect TP53 from ubiquiti-

nation thereby contributing to a standing pool of TP53 that is able to rapidly respond to DNA dam-

age. Consistent with this mechanism, transgenic mice with an increase in TP53 copy number (Garcı́a-

Cao et al., 2002) or a hypomorphic Mdm2 allele have elevated basal TP53 activity and are resistant

to tumor formation (Mendrysa et al., 2006), indicating that shifting the TP53-MDM2 equilibrium

away from TP53 degradation can directly promote cancer resistance.

The ‘decoy’ model (Abegglen et al., 2015) has also been challenged because it would allow for

activation of the TP53 signaling pathway in the absence of DNA damage (Perez and Komiya,

2016), which is generally lethal in animal models (Hoever et al., 1994; Lozano, 2010). Thus if

TP53RTG proteins allow TP53 to escape negative regulation by MDM2, how do elephants tolerate

elevated basal TP53 levels? Clearly further studies are required to specifically test whether TP53RTG

proteins interfere with the interaction between the MDM2 complex and TP53, protect TP53 from

ubiquitination, or have other functions.

What do extra TP53 genes cost?
Our observation reveals that functional TP53 duplicates only occur in the elephant lineage (and per-

haps some bats) suggests that increased TP53 dosage has a cost. Previous studies found that trans-

genic mice that overexpress Trp53 were cancer resistant but had major life history tradeoffs

including slower pre- and post-natal growth rates and reduced size (Maier et al., 2004), a shortened

lifespan (Maier et al., 2004), accelerated aging (Tyner et al., 2002), and reduced fertility

(Allemand et al., 1999; Maier et al., 2004), as well as developmental tradeoffs including reduced

proliferation, cellularity, and atrophy across multiple organ and tissue systems (Dumble et al., 2007;

Maier et al., 2004), defective ureteric bud differentiation, and small kidneys (Godley et al., 1996).

Thus, increases in TP53 copy number protects against cancer but appears to come with the cost of

developmental delays, accelerated aging, and reduced fertility (Campisi, 2003; Donehower, 2002;

Ferbeyre and Lowe, 2002; Rodier et al., 2007).

Reduced male fertility appears to be a particularly expensive cost of increased TP53 dosage.

Allemand et al., 1999), for example, generated transgenic lines of mice with one (MTp53-176), two

(MTp53-112), or 15 (MTp53-94) extra copies of the Trp53 gene fused to the inducible promoter of

the metallothionein I (MT) gene. They found that transgenic males with the highest Trp53 dosage

were nearly infertile because the majority of developing spermatids underwent apoptosis before

developing into mature sperm, males with intermediate dosage were subfertile and produced sperm

with abnormal morphologies (teratozoospermia) indicative of defective terminal differentiation of

postmeiotic cells, whereas males with the lowest dosage were fertile. Similarly, Maier et al. (2004)

generated a transgenic line that overexpresses the p44 isoform of Trp53 (D40 p53) and found that

both males and females exhibited shortened reproductive lifespans. Males, however, were more

severely affected than females with a catastrophic loss of sperm-producing cells and massive degen-

eration of the seminiferous epithelium leading to a ’Sertoli-cell only’ phenotype.

In contrast to transgenic mice that either overexpress full length TP53 or the D40 p53 isoform,

transgenic ’super p53’ mice with one (p53-tg) or two (p53-tgb) additional copies of the endogenous

TP53 locus have an enhanced DNA-damage response and are tumor resistant, yet age normally and

are fertile (Garcı́a-Cao et al., 2002, 2006; Matheu et al., 2007). Enhanced tumor suppression and

normal aging is also observed in Mdm2puro/D7–12 transgenic mice, which have one hypomorphic and

one null allele of Mdm2, express ~30% of the wild-type level of Mdm2, and have constitutively high
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TP53 activity (Mendrysa et al., 2006, 2003). These results suggest that the costs of increased TP53

copy number are incurred above a threshold of about 2–3 extra copies and can be reduced by main-

taining normal regulation of TP53 transcription and negative post-transcriptional regulation by

MDM2. Consistent with this model, deletion of either Mdm2 or Mdm4 rescues Trp53-dependent

embryonic lethality in mice (Finch et al., 2002; Migliorini et al., 2002; Parant et al., 2001) and

zebrafish (Chua et al., 2015).

Collectively, these data indicate that increased TP53 dosage comes with a cost, and suggest that

Proboscideans evolved a mechanism that reduced this cost, broke a major developmental and evolu-

tionary constraint on TP53 copy number, or perhaps evaded paying the cost of increased TP53 copy

number altogether. TP53RTG genes, for example, are transcribed from a transposable element

derived promoter that is evolutionarily younger than the retrogenes. Thus, the initial TP53RTG genes

were unlikely to be transcribed and incur a cost. Similarly, our phylogenetic analyses indicates that

copy number expanded after the initial TP53RTG gene acquired several mutations, including a pre-

mature stop codon that terminates the protein before the DNA-binding domain, which likely reduces

or completely eliminates the costs associated with TP53 target gene regulation. Although more

detailed evolutionary and comparative analyses are required to determine if TP53RTG genes

incurred a cost, it is possible that the costs were minimized because functional TP53RTG genes

evolved through non-functional intermediates, which accumulated loss of function mutations that

minimized redundancy with TP53.

Materials and methods

Identification of TP53/PT53RTG genes in sarcopterygian genomes
We used BLAT to search for TP53 genes in 61 Sarcopterygian genomes using the human TP53 pro-

tein sequences as an initial query. After identifying the canonical TP53 gene from each species, we

used the nucleotide sequences corresponding to this TP53 CDS as the query sequence for additional

BLAT searches within that species genome. To further confirm the orthology of each TP53 gene we

used a reciprocal best BLAT approach, sequentially using the putative CDS of each TP53 gene as a

query against the human genome; in each case the query gene was identified as TP53. Finally, we

used the putative amino acid sequence of the TP53 protein as a query sequence in a BLAT search.

We thus used BLAT to characterize the TP53 copy number in Human (Homo sapiens; GRCh37/

hg19), Chimp (Pan troglodytes; CSAC 2.1.4/panTro4), Gorilla (Gorilla gorilla gorilla; gorGor3.1/gor-

Gor3), Orangutan (Pongo pygmaeus abelii; WUGSC 2.0.2/ponAbe2), Gibbon (Nomascus leucoge-

nys; GGSC Nleu3.0/nomLeu3), Rhesus (Macaca mulatta; BGI CR_1.0/rheMac3), Baboon (Papio

hamadryas; Baylor Pham_1.0/papHam1), Marmoset (Callithrix jacchus; WUGSC 3.2/calJac3), Squirrel

monkey (Saimiri boliviensis; Broad/saiBol1), Tarsier (Tarsius syrichta; Tarsius_syrichta2.0.1/tarSyr2),

Bushbaby (Otolemur garnettii; Broad/otoGar3), Mouse lemur (Microcebus murinus; Broad/micMur1),

Chinese tree shrew (Tupaia chinensis; TupChi_1.0/tupChi1), Squirrel (Spermophilus tridecemlineatus;

Broad/speTri2), Mouse (Mus musculus; GRCm38/mm10), Rat (Rattus norvegicus; RGSC 5.0/rn5),

Naked mole-rat (Heterocephalus glaber; Broad HetGla_female_1.0/hetGla2), Guinea pig (Cavia por-

cellus; Broad/cavPor3), Rabbit (Oryctolagus cuniculus; Broad/oryCun2), Pika (Ochotona princeps;

OchPri3.0/ochPri3), Kangaroo rat (Dipodomys ordii; Broad/dipOrd1), Chinese hamster (Cricetulus

griseus; C_griseus_v1.0/criGri1), Pig (Sus scrofa; SGSC Sscrofa10.2/susScr3), Alpaca (Vicugna pacos;

Vicugna_pacos-2.0.1/vicPac2), Dolphin (Tursiops truncatus; Baylor Ttru_1.4/turTru2), Cow (Bos tau-

rus; Baylor Btau_4.6.1/bosTau7), Sheep (Ovis aries; ISGC Oar_v3.1/oviAri3), Horse (Equus caballus;

Broad/equCab2), White rhinoceros (Ceratotherium simum; CerSimSim1.0/cerSim1), Cat (Felis catus;

ICGSC Felis_catus 6.2/felCat5), Dog (Canis lupus familiaris; Broad CanFam3.1/canFam3), Ferret

(Mustela putorius furo; MusPutFur1.0/musFur1), Panda (Ailuropoda melanoleuca; BGI-Shenzhen 1.0/

ailMel1), Megabat (Pteropus vampyrus; Broad/pteVam1), Microbat (Myotis lucifugus; Broad Institute

Myoluc2.0/myoLuc2), Hedgehog (Erinaceus europaeus; EriEur2.0/eriEur2), Shrew (Sorex araneus;

Broad/sorAra2), Minke whale (Balaenoptera acutorostrata scammoni; balAcu1), Bowhead Whale

(Balaena mysticetus; v1.0), Rock hyrax (Procavia capensis; Broad/proCap1), Sloth (Choloepus hoff-

manni; Broad/choHof1), Elephant (Loxodonta africana; Broad/loxAfr3), Cape elephant shrew (Ele-

phantulus edwardii; EleEdw1.0/eleEdw1), Manatee (Trichechus manatus latirostris; Broad v1.0/

triMan1), Tenrec (Echinops telfairi; Broad/echTel2), Aardvark (Orycteropus afer afer; OryAfe1.0/
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oryAfe1), Armadillo (Dasypus novemcinctus; Baylor/dasNov3), Opossum (Monodelphis domestica;

Broad/monDom5), Tasmanian devil (Sarcophilus harrisii; WTSI Devil_ref v7.0/sarHar1), Wallaby (Mac-

ropus eugenii; TWGS Meug_1.1/macEug2), Platypus (Ornithorhynchus anatinus; WUGSC 5.0.1/

ornAna1), Medium ground finch (Geospiza fortis; GeoFor_1.0/geoFor1), Zebra finch (Taeniopygia

guttata; WashU taeGut324/taeGut2), Budgerigar (Melopsittacus undulatus; WUSTL v6.3/melUnd1),

Chicken (Gallus gallus; ICGSC Gallus_gallus-4.0/galGal4), Turkey (Meleagris gallopavo; TGC Tur-

key_2.01/melGal1), American alligator (Alligator mississippiensis; allMis0.2/allMis1), Painted turtle

(Chrysemys picta bellii; v3.0.1/chrPic1), Lizard (Anolis carolinensis; Broad AnoCar2.0/anoCar2), X.

tropicalis (Xenopus tropicalis; JGI 7.0/xenTro7), Coelacanth (Latimeria chalumnae; Broad/latCha1).

TP53/TP53RTG copy number estimation in proboscidean genomes
Identification of TP53/TP53RTG genes in the Asian elephant genome
We used previously published whole genome shotgun sequencing data from an Asian elephant (Ele-

phas maximus) generated on an Illumina HiSeq 2000{’Hou’} to estimate the TP53/TP53RTG copy

number in the genome. For these analyses, we combined data from two individual elephants

(ERX334765 and ERX334764) into a single dataset of 151,482,390 76-nt paired end reads. We then

mapped Asian elephant reads onto the African elephant TP53/TP53RTG genes using Bowtie2 in

paired-end mode, with the local alignment and ‘very sensitive’ options and Cufflinks (version 0.0.7)

to assemble mapped reads into genes which we treated as putative Asian elephant orthologs. We

identified 14 putative 1:1 orthologous TP53RTG genes in the Asian elephant genome, including

TP53RTG1, TP53RTG2, TP53RTG3, TP53RTG4, TP53RTG5, TP53RTG6, TP53RTG9, TP53RTG10,

TP53RTG11, TP53RTG13, TP53RTG14, TP53RTG17, TP53RTG18, and TP53RTG19.

Identification of TP53/TP53RTG genes in the Columbian and woolly
mammoth genomes
We used previously published whole genome shotgun sequencing data from an ~11,000 year old

Columbian mammoth (Mammuthus columbi) generated on an Illumina HiSeq 1000{’Sparks’} to esti-

mate the TP53/TP53RTG copy number in the genome. For these analyses, we combined data from

three individual mammoths (SRX329134, SRX329135, SRX327587, SRX327586, SRX327583,

SRX327582) into a single dataset of 158,704,819 102-nt paired end reads. We then mapped Asian

elephant reads onto the African elephant TP53/TP53RTG genes using Bowtie2 in paired-end mode,

with the local alignment and ‘very sensitive’ options, and Cufflinks (version 0.0.7) to assemble

mapped reads into genes which we treated as putative Asian elephant orthologs. We identified 14

putative 1:1 orthologous TP53RTG genes in the Columbian mammoth genome, including

TP53RTG10, TP53RTG11, TP53RTG13, TP53RTG14, TP53RTG16, TP53RTG17, TP53RTG19,

TP53RTG2, TP53RTG3, TP53RTG4, TP53RTG5, TP53RTG6, TP53RTG8, TP53RTG9.

Identification of TP53/TP53RTG genes in the American mastodon genome
We used previously published whole genome shotgun sequencing data generated on a Roche 454

Genome Sequencer (GS FLX) to estimate the TP53 copy number in a 50,000–130,000 year old Amer-

ican mastodon (Mammut americanum){’Langmead’}. To estimate TP53 copy number we combined

454 sequencing data from ‘Library A’ (SRX015822) and ‘Library B’ (SRX015823) into a single dataset

of 518,925 reads. Reads were converted from FASTQ to FASTA and aligned to African elephant

TP53 gene and retrogene sequences using Lastz. We used the ‘Roche-454 90% identity’ mapping

mode, not reporting matches lower than 90% identity. Three American mastodon reads were identi-

fied that mapped to at least one TP53 gene/retrogene. The likely identities of these reads were

determined by using BLAT to map their location in the African elephant (Broad/loxAfr3) genome;

mastodon reads mapping to a single elephant gene with >98% identity were considered likely mas-

todon orthologs. This strategy mapped one read to the TP53TRG8 retrogene, one read to the either

the TP53TRG3 or TP53RTG10 retrogenes, and one read to the TP53TRG6 retrogene.

Gene tree reconciliation
For gene tree reconciliation putative Asian elephant, Columbian mammoth, and woolly mammoth

TP53/TP53RTG orthologs were manually placed into the African elephant TP53/TP53RTG gene tree.

We then used Notung v2.6 (Chen et al., 2000) to reconcile the gene and species trees, and
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interpreted Asian elephant-, Columbian mammoth-, and wooly mammoth-specific gene losses as

unsampled TP53RTG genes if the putative divergence date of the ortholog predated the African-

(Asian elephant/Mammoth) divergence. We thus inferred two unsampled genes (TP53RTG7 and

TP53RTG8) in the Asian elephant genome, and three unsampled genes (TP53RTG18, TP53RTG7 and

TP53RTG1) in the Columbian mammoth genome. Note that this method will estimate the minimum

number of TP53/TP53RTG genes in the genome because our mapping strategy cannot identify line-

age specific duplications after each species diverged from the African elephant lineage. Finally, we

used Notung v2.6 (Chen et al., 2000) to reconcile the gene and species trees, and interpreted line-

age-specific gene losses as unsampled TP53RTG genes (i.e., genes present in the genome but miss-

ing from the aDNA sequencing data). This process was modified slightly for American mastodon,

such that ‘lost’ TP53RTG genes younger than the mastodon-elephant split were considered ele-

phant-specific paralogs rather than unsampled genes present in the mastodon genome.

Normalized read depth
We also used normalized mapped read depth to estimate TP53/TP53RTG copy number. Unlike

gene tree reconciliation, copy number estimates based on read depth cannot resolve the orthology

of specific TP53/TP53RTG copies but can estimate the total number of TP53/TP53RTG copies in the

genome and thus provide evidence of lineage specific copy number changes. For this analyses, we

mapped Asian elephant-, Columbian mammoth-, and woolly mammoth-specific reads onto the Afri-

can elephant TP53/TP53RTG genes using Bowtie 2 (Langmead and Salzberg, 2012) with the local

alignment and ‘very sensitive’ options and Cufflinks (version 0.0.7) (Trapnell et al., 2012) to assem-

ble mapped reads into genes. We then summed the read depth (‘coverage’) of TP53RTG genes and

normalized this summed TP53RTG read depth to the read depth of five single copy genomic regions

equal in length to average TP53RTG gene length. This ratio represents an estimate of the TP53/

TP53RTG copy number in the genome.

Correlation between TP53/TP53RTG copy number and body size
evolution
Relative divergence (duplication) times of the TP53 retrogenes were estimated using the TP53 align-

ment described above and BEAST (v1.7.4) (Rohland et al., 2010). We used the general time revers-

ible model (GTR), empirical nucleotide frequencies (+F), a proportion of invariable sites estimated

from the data (+I), four gamma distributed rate categories (+G), an uncorrelated lognormal relaxed

molecular clock to model substitution rate variation across lineages, a Yule speciation tree prior, uni-

form priors for the GTR substitution parameters, gamma shape parameter, proportion of invariant

sites parameter, and nucleotide frequency parameter. We used an Unweighted Pair Group Arithme-

tic Mean (UPGMA) starting tree.

To obtain posterior distributions of estimated divergence times, we use five node calibrations

modeled as normal priors (standard deviation = 1) to constrain the age of the root nodes for the

Eutheria (104.7 MYA), Laurasiatheria (87.2 MYA), Boreoeutherian (92.4 MYA), Atlantogenatan (103

MYA), and Paenungulata (64.2 MYA); divergence dates were obtained from www.timetree.org using

the ‘Expert Result’ divergence dates. The analysis was run for 5 million generations and sampled

every 1000 generations with a burn-in of 1 million generations; convergence was assessed using

Tracer, which indicated convergence was reached rapidly (within 100,000 generations). Probosci-

dean body size data were obtained from previously published studies on mammalian body size evo-

lution (Evans et al., 2012).

Inference of TP53/TP53RTG copy number expansion through segmental
duplications
We also observed that the genomic region surrounding each TP53RTG gene contained blocks of

homolgous transposable element insertions, suggesting that these regions are segmental duplica-

tions. To confirm this observation, we used MUSCLE (Edgar, 2004) to align an approximately 20 kb

region surrounding each TP53RTG gene and found that conservation within this region was very

high, again suggesting these regions are relatively recent segmental duplications. To identify if the

contigs on which TP53RTG genes are located contained locally collinear blocks (LCBs), as expected
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for segmental duplications, we aligned contigs using progressiveMAUVE (Darling et al., 2004) as

implemented in Genious (v6.1.2).

Phylogenetic analyses of TP53/TP53RTG genes
We generated a dataset of TP53 orthologs from 65 diverse mammals identified from GenBank, and

included the TP53 genes and retrogenes we identified from the African elephant, hyrax, manatee,

tenrec, cape elephant shrew, and armadillo genomes. Nucleotide sequences were aligned using the

MAFFT algorithm (Katoh and Standley, 2014) and the FFT refinement strategy implemented in the

GUIDANCE webserver (Penn et al., 2010). Alignment confidence was assessed with 100 bootstrap

replicates and ambiguously aligned sites (under the default GUIDANCE exclusion rule) removed

prior to phylogenetic analyses; lineage specific insertions and deletions were also removed prior to

phylogenetic analyses.

TP53 phylogenies were inferred using maximum likelihood implemented in PhyML (v3.1)

(Guindon et al., 2010) using a general time reversible model (GTR), empirical nucleotide frequencies

(+F), a proportion of invariable sites estimated from the data (+I), four gamma distributed rate cate-

gories (+G), and using the best of NNI and SPR branch moves during the topology search. Branch

supports were assessed using the aBayes, aLRT, SH-like, and Chi2-based ‘fast’ methods as well as

1000 bootstrap replicates (Guindon et al., 2010). We also used MrBayes (v3.2.2 x64)

(Huelsenbeck and Ronquist, 2001) for Bayesian tree inference using the GTR+I+G model; the anal-

ysis was run with two simultaneous runs of four chains for 4 million generations with the chains sam-

pled every 1000 generations. We used Tracer (v1.5) to assess when the chains reached stationarity,

which occurred around generation 100,000. At completion of the run the PRSF value was 1.00 indi-

cating the analyses had reached convergence.

Gene expression data (RNA-Seq)
To determine if TP53RTG genes were expressed, we generated RNA-Seq data from term placental

villus and adipose tissue from African elephants (Loxodonta africana) and primary dermal fibroblasts

from Asian elephants (Elepas maximus). Briefly, sequencing libraries were prepared using standard

Illumina protocols with poly(A) selection, and sequenced as 100 bp single-end reads on a

HiSeq2000. We also used previously published RNA-Seq data generated from primary fibroblasts

(isolated from ear clips) from a male (GSM1227965) and female (GSM1227964) African elephant gen-

erated on an Illumina Genome Analyzer IIx (101 cycles, single end) and a male (GSM1278046) African

elephant generated on an Illumina HiSeq 2000 (101 cycles, single end) (Cortez et al., 2014) and

combined these reads into a single dataset of 138,954,285 reads. Finally, we used previously pub-

lished 100 bp single-end reads generated on a HiSeq2000 to identify TP53RTG transcripts from

Asian elephant PBMCs (SRX1423033) (Reddy et al., 2015).

Reads were aligned to a custom built elephant reference gene set generated by combining the

sequences of the canonical TP53 gene and TP53RTG genes with the ENSEMBL African elephant

(Loxodonta africana) CDS gene build (Loxodonta_africana.loxAfr3.75.cds.all.fa) with Bowtie2

(Langmead and Salzberg, 2012). Bowtie two settings were: (1) both local alignment and end-to-

end mapping; (2) preset option: sensitive; (3) Trim n-bases from 5’ of each read: 0; and (4) Trim

n-bases from 3’ of each read: 0. Transcript assembly and FPKM estimates were generated with Cuf-

flinks (version 0.0.7) (Trapnell et al., 2012) using aligned reads from Bowtie2, non-default parame-

ters included quartile normalization and multi-read correction. Finally, we transformed FPKM

estimates into transcripts per million (TPM), TPM=(FPKM per gene/sum FPKM all genes)x106, and

defined genes with TPM � 2 as expressed (Li et al., 2010; Wagner et al., 2012, 2013).

The TP53RTG genes are 80.0–82.7% identical to TP53 at the nucleotide level, with 204–231 total

nucleotide differences compared to TP53. This level of divergence allows for many reads to be

uniquely mapped to each gene, there will also be significant read mapping uncertainty in regions of

these genes with few nucleotide differences. However, if read mapping uncertainty was leading to

false positive mappings of TP53 derived reads to TP53RTG genes we would expect to observe

the expression of many TP53RTG genes, rather the robust expression of a single (TP53RTG12) gene.

We also counted the number of uniquely mapped reads to each TP53RTG gene and TP53. We found

that 0–8 reads were uniquely mapped to most TP53RTG genes, except TP53RTG12 which had ~115

uniquely mapped reads across samples and TP53 which had ~3000 uniquely mapped reads across
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tissue samples. Thus we conclude that read mapping uncertainty has not adversely affected our

RNA-Seq analyses.

Gene expression data (PCR and Sanger sequencing)
We further confirmed expression of TP53RTG12 transcripts in elephant cells through RT-PCR, taking

advantage of differences between TP53RTG12 and TP53 sequences to design two aligned primer

sets, one TP53-specific, the other TP53RTG12 specific. TP53RTG12 primers were: 5´ ggg gaa act cct

tcc tga ga 3´ (forward) and 5´ cca gac aga aac gat agg tg 3´ (reverse). TP53 primers were: 5´ atg gga

act cct tcc tga ga 3´ (forward) and 5´ cca gac gga aac cat agg tg 3´ (reverse). The TP53 amplicon is

expected to be 251 bps in length, while deletions present in the TP53RTG12 sequence lead to a

smaller projected amplicon size of 220 bps.

Total RNA was extracted from cultured Loxodonta and Elephas fibroblasts (RNAeasy Plus Mini

kit, Qiagen), then DNase treated (Turbo DNA-free kit, Ambion) and reverse-transcribed using an

olgio-dT primer for cDNA synthesis (Maxima H Minus First Strand cDNA Synthesis kit, Thermo Scien-

tific). Control RT reactions were otherwise processed identically, except for the omission of reverse

transcriptase from the reaction mixture. RT products were PCR-amplified for 45 cycles of 94˚/20 s,

56˚/30 s, 72˚/30 s using a BioRad CFX96 Real Time qPCR detection system and SYBR Green master

mix (QuantiTect, Qiagen). PCR products were electrophoresed on 3% agarose gels for 1 hr at 100

volts, stained with SYBR safe, and imaged in a digital gel box (ChemiDoc MP, BioRad) to visualize

relative amplicon sizes. PCR products were also directly sequenced at the University of Chicago

Genomics core facility, confirming projected product sizes and sequence identities.

Gene prediction, promoter annotation, and TP53RTG transcript
identification
We used geneid v1.2 (http://genome.crg.es/software/geneid/geneid.html) to infer if the TP53RTG12

gene contained a non-coding exon 5’ to the predicted ATG start codon. For gene structure predic-

tion we used the full-length scaffold_825 from African elephant (Broad/loxAfr3) sequence and forced

an internal exon where the TP53RTG12 gene is encoded in scaffold_825. Geneid identified a puta-

tive exon 5’ to the TP53RTG12 gene from nucleotides 1761–1935 and an exon 3’ from nucleotides

6401–6776. We also used GENESCAN (http://genes.mit.edu/cgi-bin/genscanw_py.cgi) to predict

the location of exons in the full-length scaffold_825 sequence and identified a putative exon from

nucleotides 1750–1986. We next used Bowtie2 (Langmead and Salzberg, 2012) to map African and

Asian elephant fibroblast RNA-Seq data onto African elephant scaffold_825 with the default

settings.

Taxonomic distribution of the RTE1_LA retrotransposon
The RTE1_LA non-LTR retrotransposon has previously been described from the African elephant

genome, these elements are generally more than 90% identical to the consensus RTE1_LA sequence

but less than 70% identical to other mammalian RTEs (http://www.girinst.org/2006/vol6/issue3/

RTE1_LA.html). These data suggest that the RTE_LA element has relatively recently expanded in the

elephant genome. To determine the taxonomic distribution of the RTE1_LA element we used BLAT

to search the lesser hedgehog tenrec (Echinops telfairi), rock hyrax (Procavia capensis), West Indian

manatee (Trichechus manatus), armadillo (Dasypus novemcinctus), and sloth (Choloepus hoffmanni)

genomes. We identified numerous copies of the RTE_LA element in the genome of the Afrotherians,

but not the Xenarthran genomes. These data indicate that the RTE_LA element is Afrotherian-spe-

cific, rather than Elephant-specific.

TP53/TP53RTG western blotting
Elephant and Hyrax primary fibroblasts (San Diego Zoo, ’Frozen Zoo’) were grown to confluency in

10 cm dishes at 37˚C/5% CO2 in a culture medium consisting of FGM/EMEM (1:1) supplemented

with insulin, FGF, 6% FBS and Gentamicin/Amphotericin B (FGM-2, singlequots, Clonetics/Lonza).

Culture medium was removed from dishes just prior to UV treatment and returned to cells shortly

afterwards. Experimental cells were exposed to 50 J/m2UV-C radiation in a crosslinker (Stratalinker

2400, Stratagene), while control cells passed through media changes but were not exposed to UV. A

small volume (~3 mL) of PBS covered fibroblasts at the time of UV exposure. To inhibit TP53
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proteolysis, MG-132 (10 mM) was added to experimental cell medium 1 hr prior to UV exposure, and

maintained until the time of cell lysis. 5 hr post-UV treatment, cells were briefly rinsed in PBS, then

lysed and boiled in 2x SDS-PAGE sample buffer. Lysates were separated via SDS-PAGE on 10% gels

for 1 hr at 140 volts, then electrophoretically transferred to PVDF membranes (1 hr at 85 volts).

Membranes were blocked for 1 hr in 5% milk in TBST and incubated overnight at 4˚C with rabbit

polyclonal TP53 antibodies (FL-393, Santa Cruz Biotechnology, and ab131442, Abcam). Blots were

washed 3x in TBST, incubated with HRP-conjugated, anti-rabbit IgG 2˚ antibodies for 1 hr at RT, and

washed four more times in TBST. Protein bands were visualized via enhanced chemiluminescence

(BioRad Clarity), and imaged in a digital gel box (Chemidoc MP, BioRad). Western blots were repli-

cated three independent times.

Co-immunoprecipitation
Human HEK-293 cells were grown to 80% confluency in 20 cm dishes at 37˚C/5% CO2 in a culture

medium consisting of DMEM supplemented with 10% FBS. At 80% confluency, cells were transiently

transfected with the TP53RTG12 pcDNA3.1(+)/myc-His expression vector. After 16 hr the transfec-

tion media was removed and replaced with fresh DMEM, and the cells were incubated an additional

24 hr before harvesting. After removing DMEM and washing cells twice with PBS, 1 mL ice-cold lysis

buffer (20 mM Tris, pH 8.0, 40 mM KCl, 10 mM MgCl2, 10% glycerol, 1% Triton X-100, 1x Complete

EDTA-free protease inhibitor cocktail (Roche), 1x PhosSTOP (Roche)) was added to each plate and

cells were harvested by scraping with a rubber spatula. Cells were then incubated on ice for 30 min

in 420 mM NaCl. The whole cell lysate was cleared by centrifugation at 10,000 rpm for 30 min at

4˚C, and the supernatant was transferred to a clean microfuge tube. After equilibrating protein con-

centrations, 1 mL of sample was mixed with 40 mL of a-MDM2 or a-Myc antibody conjugated aga-

rose beads (Sigma) pre-washed with TNT buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05%

Triton X-100), and rotated overnight at 4˚C. The following day, samples were treated with 50 U

DNase (Roche) and 2.5 mg RNase (Roche) for 60 min at room temperature, as indicated. Samples

were washed 3x with 1 mL wash buffer (150 mM NaCl, 0.5% Triton X-100). After the final wash, aga-

rose beads were resuspended in elution buffer (500 mM Tris pH 7.5, 1 M NaCl), and boiled to elute

immunoprecipitated complexes. Eluted protein was run on Bis-tris gels, probed with antibodies and

visualized by Chemi-luminescence. Serial Westerns were performed for each antibody following

chemical stripping and re-blocking. Antibodies were from Santa Cruz: MDM2 (SMP14) sc-965, lot

#J2314; p53 (Fl-393) sc-6243, lot # D0215; c-Myc (9E10) sc-40, lot # G2413.

ApoTox-Glo viability/cytotoxicity/apoptosis analyses
Primary fibroblasts were grown to 80% confluency in T-75 culture flasks at 37˚C/5% CO2 in a culture

medium consisting of FGM/EMEM (1:1) supplemented with insulin, FGF, 6% FBS and Gentamicin/

Amphotericin B (FGM-2, singlequots, Clonetics/Lonza). 104 cells were seeded into each well of an

opaque bottomed 96-well plate, leaving a column with no cells (background control); each 96-well

plate contained paired elephant and hyrax samples. Serial dilutions of Doxorubicin (0 uM, 0.5 uM,

1.0 uM, 5 uM, 10 uM and 50 uM), Mitomycin c (0 uM, 0.5 uM, 1.0 uM, 5 uM, 10 uM and 50 uM), and

Nutlin-3a (0 uM, 0.5 uM, 1.0 uM, 5 uM, 10 uM and 50 uM) and 90% culture media were added to

each well such that there were four biological replicates for each condition. After 18 hr of incubation

with each drug, cell viability, cytotoxicity, and caspase-3/7 activity were measured using the Apo-

Tox-Glo Triplex Assay (Promega) in a GloMax-Multi+ Reader (Promega). Data were standardized to

no-drug control cells. For UV-C treatment, culture medium was removed from wells prior to UV

treatment and returned to cells shortly afterwards. Experimental cells were exposed to 50 J/m2UV-C

radiation in a crosslinker (Stratalinker 2400, Stratagene), while control cells passed through media

changes but were not exposed to UV. A small volume (~30 uL) of PBS covered fibroblasts at the

time of UV exposure. Cell viability, cytotoxicity, and caspase-3/7 activity were measured using the

ApoTox-Glo Triplex Assay (Promega) in a GloMax-Multi+ Reader (Promega) 6, 12, 28.5 and 54.5 hr

after UV-C treatment. Data were standardized to no UV-C exposure control cells. ApoTox-Glo Tri-

plex Assays were replicated three independent times.
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Luciferase assays
Primary fibroblasts were grown to 80% confluency in T-75 culture flasks at 37˚C/5% CO2 in a culture

medium consisting of FGM/EMEM (1:1) supplemented with insulin, FGF, 6% FBS and Gentamicin/

Amphotericin B (FGM-2, singlequots, Clonetics/Lonza). At confluency, cells were trypsinized, centri-

fuged at 90 g for 10 min and resuspended in nucleofection/supplement solution and incubated for

15 min. After incubation 1ug of the pGL4.38[luc2p/p53 RE/Hygro] luciferase reporter vector and 100

ng of the pGL4.74[hRluc/TK] Renilla reporter vector were transiently transfected into an elephant

and hyrax cells using the Amaxa Basic Nucleofector Kit (Lonza) using protocol T-016. Immediately

following nuleofection, 104 cells were seeded into each well of an opaque bottomed 96-well plate,

leaving a column with no cells (background control); each 96-well plate contained paired elephant

and hyrax samples. 24 hr after nucleofection cells were treated with either vehicle control, Doxorubi-

cin, Mitomycin c, Nutlin-3a, or 50 J/m2UV-C. Luciferase expression was assayed 18 hr after drug/

UV-C treatment cells, using the Dual-Luciferase Reporter Assay System (Promega) in a GloMax-

Multi+ Reader (Promega). For all experiments luciferase expression was standardized to Renilla

expression to control for differences nucleofection efficiency across samples; Luc./Renilla data is

standardized to (Luc./Renilla) expression in untreated control cells. Each luciferase experiment was

replicated three independent times.

siRNA experiments
siRNAs designed to specifically-target TP53RTG were validated via qRT-PCR using the two primer

sets described earlier, which amplify either TP53RTG or canonical TP53 cDNAs, to confirm specificity

and efficacy of knockdown. Sequences of the three TP53RTG-specific siRNAs used are as follows: (1)

5’-CAGCGGAGGCAGUAGAUGAUU-3’, (2) 5’-GGCUCAAGGAAUAUCAGAAUU-3’, (3) 5’-CAG-

CAGCGGAGGCAGUAGAUU-3’ (Dharmacon). Loxodonta fibroblasts were transfected with siRNAs

using Lipofectamine LTX, and tested 48–72 hr later for either TP53 response via luciferase assay or

for cell viability/toxicity/apoptosis via ApoTox-Glo assay.
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