224 research outputs found

    Optimized CGenFF force-field parameters for acylphosphate and N-phosphonosulfonimidoyl functional groups

    Get PDF
    We report an optimized set of CGenFF parameters that can be used to model small molecules containing acylphosphate and N-phosphonosulfonimidoyl functional groups in combination with the CHARMM force field. Standard CGenFF procedures were followed to obtain bonded interaction parameters, which were validated by geometry optimizations, comparison to the results of calculations at the MP2/6-31+G(d) level of theory, and molecular dynamics simulations. In addition, partial atomic charges were assigned so that the energy of hydrogen bonding of the model compounds with water was correctly reproduced. The availability of these parameters will facilitate computational studies of enzymes that generate acyladenylate intermediates during catalytic turnover. In addition, given that the N-phosphonosulfonimidoyl moiety is a stable transition state analog for the reaction of ammonia with an acyladenylate, the parameters developed in this study should find use in efforts to develop novel and potent inhibitors of various glutamine-dependent amidotransferases that have been validated as drug targets. Topology and parameter files for the model compounds used in this study, which can be combined with other CGenFF parameters in computational studies of more complicated acylphosphates and N-phosphonosulfonimidates are made available

    Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes

    Get PDF
    Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of ‘second-shell’ hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.</jats:p

    Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 ÎŒs molecular dynamics simulations

    Get PDF
    Little is known about the influence of multiple consecutive ‘non-standard’ (Z, 6-amino-5-nitro-2(1H)-pyridone, and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) nucleobase pairs on the structural parameters of duplex DNA. P:Z nucleobase pairs follow standard rules for Watson–Crick base pairing but have rearranged hydrogen bonding donor and acceptor groups. Using the X-ray crystal structure as a starting point, we have modeled the motions of a DNA duplex built from a self-complementary oligonucleotide (5΄-CTTATPPPZZZATAAG-3΄) in water over a period of 50 ÎŒs and calculated DNA local parameters, step parameters, helix parameters, and major/minor groove widths to examine how the presence of multiple, consecutive P:Z nucleobase pairs might impact helical structure. In these simulations, the PZ-containing DNA duplex exhibits a significantly wider major groove and greater average values of stagger, slide, rise, twist and h-rise than observed for a ‘control’ oligonucleotide in which P:Z nucleobase pairs are replaced by G:C. The molecular origins of these structural changes are likely associated with at least two differences between P:Z and G:C. First, the electrostatic properties of P:Z differ from G:C in terms of density distribution and dipole moment. Second, differences are seen in the base stacking of P:Z pairs in dinucleotide steps, arising from energetically favorable stacking of the nitro group in Z with π–electrons of the adjacent base

    A Mechanochemical Switch to Control Radical Intermediates

    Get PDF
    B12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5â€Č-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5â€Č-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions

    Facile C<sub>sp</sub><sup>2</sup>-C<sub>sp</sub><sup>2</sup> bond cleavage in oxalic acid-derived radicals

    Get PDF
    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. Many questions remain about the catalytic mechanism of OxDC although it has been proposed that the reaction proceeds via substrate-based radical intermediates. Using coupled cluster theory combined with implicit solvation models we have examined the effects of radical formation on the structure and reactivity of oxalic acid-derived radicals in aqueous solution. Our results show that the calculated solution-phase free-energy barrier for C–C bond cleavage to form CO2 is decreased from 34.2 kcal/mol for oxalic acid to only 9.3 kcal/mol and a maximum of 3.5 kcal/mol for the cationic and neutral oxalic acid-derived radicals, respectively. These studies also show that the C–C σ bonding orbital of the radical cation contains only a single electron, giving rise to an elongated C–C bond distance of 1.7 Å; a similar lengthening of the C–C bond is not observed for the neutral radical. This study provides new chemical insights into the structure and stability of plausible intermediates in the catalytic mechanism of OxDC, and suggests that removal of an electron to form a radical (with or without the concomitant loss of a proton) may be a general strategy for cleaving the unreactive C–C bonds between adjacent sp2-hybridized carbon atoms

    A sulfoximine-based inhibitor of human asparagine synthetase kills l-asparaginase-resistant leukemia cells.

    Get PDF
    An adenylated sulfoximine transition-state analogue 1, which inhibits human asparagine synthetase (hASNS) with nanomolar potency, has been reported to suppress the proliferation of an l-asparagine amidohydrolase (ASNase)-resistant MOLT-4 leukemia cell line (MOLT-4R) when l-asparagine is depleted in the medium. We now report the synthesis and biological activity of two new sulfoximine analogues of 1 that have been studied as part of systematic efforts to identify compounds with improved cell permeability and/or metabolic stability. One of these new analogues, an amino sulfoximine 5 having no net charge at cellular pH, is a better hASNS inhibitor (K(I)(∗)=8nM) than 1 and suppresses proliferation of MOLT-4R cells at 10-fold lower concentration (IC(50)=0.1mM). More importantly, and in contrast to the lead compound 1, the presence of sulfoximine 5 at concentrations above 0.25mM causes the death of MOLT-4R cells even when ASNase is absent in the culture medium. The amino sulfoximine 5 exhibits different dose-response behavior when incubated with an ASNase-sensitive MOLT-4 cell line (MOLT-4S), supporting the hypothesis that sulfoximine 5 exerts its effect by inhibiting hASNS in the cell. Our work provides further evidence for the idea that hASNS represents a chemotherapeutic target for the treatment of leukemia, and perhaps other cancers, including those of the prostate

    Structural basis for a six nucleotide genetic alphabet

    Get PDF
    Expanded genetic systems are most likely to work with natural enzymes if the added nucleotides pair with geometries that are similar to those displayed by standard duplex DNA. Here, we present crystal structures of 16-mer duplexes showing this to be the case with two nonstandard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) that were designed to form a Z:P pair with a standard “edge on” Watson–Crick geometry, but joined by rearranged hydrogen bond donor and acceptor groups. One duplex, with four Z:P pairs, was crystallized with a reverse transcriptase host and adopts primarily a B-form. Another contained six consecutive Z:P pairs; it crystallized without a host in an A-form. In both structures, Z:P pairs fit canonical nucleobase hydrogen-bonding parameters and known DNA helical forms. Unique features include stacking of the nitro group on Z with the adjacent nucleobase ring in the A-form duplex. In both B- and A-duplexes, major groove widths for the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs, perhaps to accommodate the large nitro group on Z. Otherwise, ZP-rich DNA had many of the same properties as CG-rich DNA, a conclusion supported by circular dichroism studies in solution. The ability of standard duplexes to accommodate multiple and consecutive Z:P pairs is consistent with the ability of natural polymerases to biosynthesize those pairs. This, in turn, implies that the GACTZP synthetic genetic system can explore the entire expanded sequence space that additional nucleotides create, a major step forward in this area of synthetic biology

    Second-shell hydrogen bond impacts transition-state structure in bacillus subtilis oxalate decarboxylase

    Get PDF
    There is considerable interest in how “second-shell” interactions between protein side chains and metal ligands might modulate Mn(II) ion redox properties and reactivity in metalloenzymes. One such Mn-dependent enzyme is oxalate decarboxylase (OxDC), which catalyzes the disproportionation of oxalate monoanion into formate and CO2. Electron paramagnetic resonance (EPR) studies have shown that a mononuclear Mn(III) ion is formed in OxDC during catalytic turnover and that the removal of a hydrogen bond between one of the metal ligands (Glu101) and a conserved, second-shell tryptophan residue (Trp132) gives rise to altered zero-field splitting parameters for the catalytically important Mn(II) ion. We now report heavy-atom kinetic isotope effect measurements on the W132F OxDC variant, which test the hypothesis that the Glu101/Trp132 hydrogen bond modulates the stability of the Mn(III) ion during catalytic turnover. Our results suggest that removing the Glu101/Trp132 hydrogen bond increases the energy of the oxalate radical intermediate from which decarboxylation takes place. This finding is consistent with a model in which the Glu101/Trp132 hydrogen bond in WT OxDC modulates the redox properties of the Mn(II) ion

    Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4

    Get PDF
    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein
    • 

    corecore