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Abstract
We report an optimized set of CGenFF parameters that can be used to model small molecules
containing acylphosphate and N-phosphonosulfonimidoyl functional groups in combination with
the CHARMM force field. Standard CGenFF procedures were followed to obtain bonded
interaction parameters, which were validated by geometry optimizations, comparison to the results
of calculations at the MP2/6-31+G(d) level of theory, and molecular dynamics simulations. In
addition, partial atomic charges were assigned so that the energy of hydrogen bonding of the
model compounds with water was correctly reproduced. The availability of these parameters will
facilitate computational studies of enzymes that generate acyladenylate intermediates during
catalytic turnover. In addition, given that the N-phosphonosulfonimidoyl moiety is a stable
transition state analog for the reaction of ammonia with an acyladenylate, the parameters
developed in this study should find use in efforts to develop novel and potent inhibitors of various
glutamine-dependent amidotransferases that have been validated as drug targets. Topology and
parameter files for the model compounds used in this study, which can be combined with other
CGenFF parameters in computational studies of more complicated acylphosphates and N-
phosphonosulfonimidates are made available.
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Introduction
A significant number of metabolic enzymes activate substrates for reaction by adenylation
[1], including validated drug targets such as tRNA aminoacyl synthetases [2], glutamine-
dependent NAD+ synthetase [3, 4] and aminoacyl-tRNA transamidating enzymes [5–7] (Fig.
1). In addition, recent studies have identified glutamine-dependent asparagine synthetase
(ASNS) [8] (Fig. 1) as (i) a critical component in the development of prostate cancer [9],
and (ii) a biomarker for ovarian cancer [10]. Although its precise physiological role remains
hotly debated, ASNS has also been implicated in the molecular mechanisms underlying the
onset of drug-resistant acute lymphoblastic leukemia [8, 11, 12]. ASNS inhibitors therefore
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have clinical potential for use in the treatment of leukemia and solid tumors, such as those of
the prostate and ovary. Our group has reported that functionalized sulfoximines, such as 1
and 2 (Fig. 2), are the first small molecule inhibitors of human ASNS with nanomolar
potency, and has established that these compounds can kill, or suppress, the proliferation of
asparaginase-resistant MOLT-4 cells [13, 14]. Structure-based identification of sulfoximine
derivatives that are more “druglike” [15, 16], and therefore possess improved cell
permeability and bioactivity, using computational methods is precluded, however, by a lack
of force field parameters that describe the N-phosphonosulfonimidoyl moiety. Similarly,
efforts to obtain optimized structures of ASNS complexed to acyladenylates, such as 3,
which are needed for virtual screening studies [17] are hampered by an absence of
parameters for acylphosphates. We now report optimized parameters for both the
acylphosphate and N-phosphonosulfonimidoyl functional groups, which have been obtained
following the systematic procedures used to develop the CHARMM General Force Field
(CGenFF) [18]. As a result, these parameters are compatible with the CHARMM all-atom
additive force field used to simulate biological molecules [19, 20]. Our parameter values
should also facilitate efforts to (i) obtain a detailed understanding of enzymes that catalyze
acyladenylate formation and (ii) identify novel small molecules with potential clinical
application as anti-cancer and antibacterial agents.

Computational Methods
Calculations to obtain the missing parameters needed to describe the conformational and
intermolecular energetics of functionalized acylphosphates and N-phosphorylated
sulfoximines were performed on the model compounds 4 and 5 (Fig. 3). Initial guesses were
obtained from the ParamChem web site (www.paramchem.org) using automated algorithms
[21, 22]. The global energy minima for 4 and 5 were identified at the MP2/6-31+G(d) level
of theory [23, 24], as implemented in Gaussian09 [25], by geometry optimization (default
tolerances). Standard CGenFF Lennard-Jones parameters were used for all atoms, and an
initial set of atomic partial charges was assigned by analogy to those of similar CGenFF
atom types using ParamChem. Vibrational spectra were calculated for the optimized
geometries of 4 and 5 to (i) ensure that these structures did represent energy minima, and (ii)
obtain frequencies and their assignments to specific modes. The numerical values of all QM
frequencies were scaled by 0.943 prior to comparison with those calculated using empirical
potential energy functions [26]. As described elsewhere [18], water molecules in the TIP3P
geometry [27] were placed around 4 and 5 so as to form hydrogen bonding interactions with
all donor/acceptor groups (Fig. 4), and each model/water interaction distance was optimized
at the HF/6-31G(d) level [28, 29] with the remaining degrees of freedom fixed. We note that
both tetrahedral (“lone pair”) and trigonal hydrogen bonding interactions between water and
oxygen atoms (R-O-R` and terminal oxygen atoms) were considered, and partial charges
assigned in order to obtain the best agreement between the interaction energies for all
orientations.

All empirical force field calculations were performed using the program CHARMM version
35 [30], which allowed us to define new atom types with names of up to six characters. An
RMS gradient of 10−5 kcal/mol/Å was employed in energy minimizations and subsequent
vibrational analyses were performed using the VIBRAN and MOLVIB modules in
CHARMM. No non-bonded interaction distance cutoffs were used in these calculations.

A potential energy scan (PES) for each selected dihedral angle was calculated, in 15°
increments, using the scan facility (keyword: “Opt = ModRedundant”) implemented within
Gaussian09 [25], with structures being optimized at the MP2/6-31+G(d) level. Single point
energies were subsequently determined for each structure at its optimized geometry using
MP2/cc-pVTZ calculations. The corresponding PES calculated using the CHARMM
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empirical energy function employed the QM geometries as initial guesses, each structure
being energy minimized with the dihedral angle of interest being restrained with a harmonic
potential (force constant of 104 kcal/mol/rad). The harmonic restraints were not removed
prior calculating conformational energies.

Each model compound 4 and 5 was solvated in octahedral box (28 Å × 28 Å × 28 Å) of
TIP3P water molecules [27] and energy minimized by steepest descent (SD) and adopted
basis Newton-Raphson (ABNR) algorithms [30]. Periodic boundaries were used in all MD
simulations with the particle mesh Ewald method [31] being used to obtain electrostatic
energies. Equations of motion were integrated over 1 fs time steps, with covalent bonds to
hydrogen being constrained using the SHAKE algorithm [32]. After heating to 300 K (30
ps), each system was equilibrated for a further 40 ps in the NVT ensemble before the
“production” MD simulation was performed in the NPT ensemble (2 ns). Constant
temperature and pressure (1 atm) were achieved by coupling the systems to a Langevin
thermostat and a Nosé–Hoover Langevin barostat, respectively [33, 34].

Missing loops in the X-ray crystal structure of γ-glutamylcysteine synthetase complexed
with the N-phosphorylated sulfoximine 6 (Fig. 2) (1VA6) [35] were modeled using the
CHIMERA interface to MODELLER [36, 37]. The resulting model complex was then
solvated in octahedral box (87 Å × 87 Å × 87 Å) of TIP3P water molecules [27] and energy
minimized by steepest descent (SD) and adopted basis Newton-Raphson (ABNR)
algorithms so that the final structure possessed an RMS gradient of 10−5 kcal/mol/Å [30].
Periodic boundaries were used in this calculation with the particle mesh Ewald method [31]
being used to obtain electrostatic energies.

Results and discussion
Parameterization

In order to ensure compatibility with the existing CHARMM force field for proteins and
nucleic acids [19, 20], standard protocols [18] were used to generate missing parameters for
bonds and bond angles in the model acylphosphate 4 and the N-phosphonosulfonimidoyl
derivative 5 (Fig. 3). Thus, the lowest energy conformations for these two molecules were
located by standard search procedures, and geometry optimization was carried out at the
MP2/6-31+G(d) level given that both are mono-anions. Vibrational frequency analysis
confirmed that these structures were true energy minima.

Water molecules were positioned about each of the lowest energy structures so as to make
idealized hydrogen bonding interactions, and then atomic partial charges were optimized to
give the best agreement between the non-covalent interaction energies and bond distances
calculated using HF/6-31G(d) and CGenFF (Table 2). In this procedure, each molecule-
water complex was built by optimizing the hydrogen bond distance between each model
compound, at its MP2/6-31G(d) optimized geometry, and a TIP3P water while fixing all
other degrees of freedom. Although a higher level of theory would have given more accurate
results, QM calculations were performed with HF/6-31G(d) in order to be consistent with
the methodology used to develop the CHARMM force field for biological molecules. The
choice of optimized partial atomic charges was constrained by (i) requiring that the value on
all hydrogen atoms was 0.09, (ii) maintaining the initial set of CGenFF charges on carbons
C4 and in C11 in acylphosphate 4 and on carbons C4, C9 and C11 in N-
phosphonosulfonimidoyl derivative 5, and (iii) the summation of all atomic charges to −1
(Table 1). After partial charge optimization, all CGenFF energies were within 0.2 kcal/mol
of the corresponding HF/6-31G(d) value and the CGenFF distances were 0.2 Å shorter than
those computed quantum mechanically (Table 2).
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Having established good parameters for calculating non-bonded interaction energies, we
optimized the reference values for the bond lengths, bond and dihedral angles, and improper
torsions. Force constants were adjusted so that the MOLVIB vibrational frequencies,
together with contributions of different harmonic modes to each vibration, were in good
agreement with MP2/6-31G(d) values that had been scaled by 0.943. Manual adjustment of
the force constants then gave optimized CGenFF structures for 4 and 5 that were in excellent
agreement with those calculated at the MP2/6-31+G(d) level of theory (Table 3), i.e.
CGenFF-optimized structures had bond lengths and angles within 0.03 Å and 3° of the QM-
derived values, respectively [18].

With optimized partial atomic charges and parameters for bonds and bond angles in hand,
we adjusted the amplitudes, multiplicities and phases for the new dihedral angle interactions
(Table 4 and Table S1 in supporting information). Thus, amplitudes for missing dihedrals
composed only of non-hydrogen atoms were chosen so as to reproduce the adiabatic
potential energy scans (PES) computed by ab initio methods (Fig. 5 and Fig. 6). Although
the C4-O3-P1-O8 dihedral for the acylphosphate moiety was not a missing parameter in the
CHARMM force-field, efforts to obtain good agreement between the QM and MM potential
energy curves for our model compound 4 proved to be difficult. We therefore assigned a
new atom type to O8 (Fig. 3), which enabled the development of optimized dihedral
potentials for acylphosphate 4 while retaining the original parameterization of the C4-O3-
P1-O8 dihedral interaction for modeling nucleic acids. The Lennard-Jones parameters for
the OG305 atom type were identical to those of the OG303 atom type. On the other hand,
for the O3-P1-O8-C9 dihedral angle (e.g. Fig. 5B) it proved impossible to identify
parameters that completely reproduced the complete QM PES including minima and barriers
heights. In this case, we therefore sought to maximize agreement between the QM and MM
potential energy curves for the low energy regions rather than all the barrier heights.

Parameter validation studies using energy minimization
Our initial effort at parameter validation examined whether the extent to which those for the
N-phosphonosulfonimidoyl functional group could reproduce data from X-ray crystal
structures. Given the absence of small molecule structures for adenylylated sulfoximines in
the Cambridge Structural Database [38] we chose to evaluate the performance of our
parameters in modeling the sulfoximine phosphate 6 (Fig. 2) that is bound to the enzyme γ-
glutamylcysteine synthetase [35]. After the insertion of missing loops in the X-ray crystal
structure (1VA6) using the CHIMERA interface to MODELLER [36, 37], the resulting
structure was energy minimized in an octahedral box of TIP3P water molecules [27].
Superimposition of the energy minimized structure of 6 with that in the original X-ray
crystal structure showed good agreement between the optimized and experimental bond
lengths and bond angles (Fig. 7).

Parameter validation studies using molecular dynamics simulations
As a further validation of the new CGenFF parameters obtained using model compounds 4
and 5, we performed molecular dynamics (MD) simulations of these two small molecules in
aqueous solution. Over a period of 16 ns, rotation of the phosphate group was observed (Fig
8 and Fig S1 in supporting information), and no major bond length or bond angle distortions
occurred during the simulation. In addition, the torsion angles for which new parameters had
been developed (Tables 5 and 6) fluctuated about values corresponding to minima on the
potential energy surface (Figs 5 and 6). This data therefore suggests that these CGenFF
parameters will be suitable for use in the simulated annealing [39], in silico docking [40]
and free energy perturbation calculations [41] that will be undertaken as part of future drug
discovery efforts.
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Summary
We have developed the first optimized set of CGenFF parameters for acylphosphates and N-
phosphonosulfonimidates. Although we employed the recommended protocol for obtaining
small molecule parameters that are consistent with the CHARMM force field, these values
should also represent a useful starting point for the development of alternate sets of
optimized parameters for acylphosphate and N-phosphonosulfonimidoyl functional groups
for use with the AMBER [42] or GROMOS [43] force fields. More importantly, our results
should be generally useful to medicinal chemists seeking to discover potent inhibitors of a
variety of enzymes, including glutamine synthetase [44], HIV-1 protease [45], γ-
glutamylcysteine synthetase [35,46], and Leishmania typanothione synthetase-amidase [47].
In the case of human ASNS, access to these parameters will also facilitate our efforts to use
free energy perturbation methods to (i) delineate which diastereoisomer of 1 and 2 binds
most tightly to the enzyme [13, 14], and (ii) examine the ability of novel sulfoximine
derivatives to act as potent ASNS inhibitors. These calculations will be reported in due
course.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Reactions catalyzed by enzymes that activate substrates by adenylylation and are validated
drug targets.
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Fig. 2.
Structures of functionalized sulfoximines (1 and 2) that are nanomolar inhibitors of human
asparagine synthetase (sulfoximine moiety is colored red). These compounds mimic the
transition for the reaction of ammonia with the acyladenylate intermediate 3 (acylphosphate
moiety highlighted in blue) that is formed during catalytic turnover. Compound 6 is an
inhibitor of the enzyme γ-glutamylcysteine synthetase.
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Fig. 3.
Schematic representation of model compounds 4 and 5 showing atom numbering.
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Fig. 4.
Orientations of water molecules about the model compounds 4 (left) and 5 (right) used in
atomic partial charge optimization. Note that only a single water molecule is hydrogen
bonded to the model structure during each calculation; all waters are shown here merely for
convenience. Atom coloring scheme: C, grey; H, white; N, blue; O, red; P, orange; S,
yellow.
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Fig. 5.
Potential energy scans (PES) for optimized dihedral angle parameters in model
acylphosphate 4. QM PES (red), optimized (black) and initial (blue) MM PES. Interaction
labels correspond to the atom numbers in Fig. 3.
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Fig. 6.
Potential energy scans (PES) for optimized dihedral angle parameters in model sulfoximine
5. QM PES (red), optimized (black) and initial (blue) MM PES. Interaction labels
correspond to the atom numbers in Fig. 3.
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Fig. 7.
Superimposition (RMSD 0.2Å) of the N-phosphorylsulfoximine derivative 6 before (C,
brown) and after (C, light blue) energy minimization of the complex of 6 bound to the
enzyme γ-glutamylcysteine synthetase. Atom coloring scheme: H, white; N, blue; O, red; S,
yellow; P, orange.
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Fig. 8.
MD trajectory data (16 ns) showing that the phosphate moiety in the model acylphosphate 4
undergoes rotation during the simulation. Dihedral angles are labeled with the atom numbers
shown in Fig. 3.
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Table 6

New bonded interaction parameters assigned for the N-phosphonosulfonimidoyl functional group in 5

Bonds Atom Types Req
a KR

P1-N8 PG1-NG2D1 1.72 100

N8-S11 NG2D1-SG3O2 1.53 400

Bond Angles Atom Types Θeq
b KΘ

P1-N8-S11 PG1-NG2D1-SG3O2 113.0 30

O2-P1-N8 OG2P1-PG1-NG2D1 106.0 50

O3-P1-N8 NG2D1-PG1-OG303 98.8 94

O7-P1-N8 OG2P1-PG1-NG2D1 106.0 50

N8-S11-C9 NG2D1-SG3O2- CG321 114.3 65

N8-S11-O12 NG2D1-SG3O2- OG2P1 119.0 65

N8-S11-C13 NG2D1-SG3O2- CG321 114.0 79

Dihedral Angles Atom Types Kφc n δ

P1-N8-S11-O2 PG1-NG2D1-SG3O2-OG2P1 2.50 1 180

P1-N8-S11-O2 PG1-NG2D1-SG3O2-OG2P1 1.00 2 0

P1-N8-S11-C9 PG1-NG2D1-SG3O2-CG321 1.00 2 0

P1-N8-S11-C13 PG1-NG2D1-SG3O2-CG331 1.00 1 0

P1-N8-S11-C13 PG1-NG2D1-SG3O2-CG331 0.60 2 0

O2-P1-N8-S11 OG2P1-PG1-NG2D1-SG3O2 0.50 4 0

O3-P1-N8-S11 OG303-PG1-NG2D1-SG3O2 1.80 1 0

O3-P1-N8-S11 OG303-PG1-NG2D1-SG3O2 3.00 2 0

N8-P1-O3-C4 NG2D1-PG1-OG303-CG331 0.40 1 0

N8-P1-O3-C4 NG2D1-PG1-OG303-CG331 0.80 2 0

N8-P1-O3-C4 NG2D1-PG1-OG303-CG331 0.35 3 0

N8-S11-C9-C19 NG2D1-SG3O2-CG321-CG331 1.40 1 180

N8-S11-C9-C19 NG2D1-SG3O2-CG321-CG331 0.001 3 0

N8-S11-C9-H17 NG2D1-SG3O2-CG321-HGA2 0.16 3 0

N8-S11-C13-H14 NG2D1- SG3O2-CG331-HGA3 0.18 3 0

a
Req, reference bond distance (Å) and KR, force constant (kcal/mol/Å2).

b
Θeq, reference bond angle (°) and KΘ, force constant (kcal/mol/rad2).

a
Kφ, torsional potential (kcal/mol/rad2), n and δ, periodicity and phase offset (°) of the torsion, respectively.
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