830 research outputs found

    Interpretation of experimental results on Kondo systems with crystal field

    Get PDF
    We present a simple approach to calculate the thermodynamic properties of single Kondo impurities including orbital degeneracy and crystal field effects (CFE) by extending a previous proposal by K. D. Schotte and U. Schotte [Physics Lett. A 55, 38 (1975)]. Comparison with exact solutions for the specific heat of a quartet ground state split into two doublets shows deviations below 10%10\% in absence of CFE and a quantitative agreement for moderate or large CFE. As an application, we fit the measured specific heat of the compounds CeCu2_2Ge2_2, CePd3_{3}Si0.3_{0.3}, CePdAl, CePt, Yb2_2Pd2_2Sn and YbCo2_2Zn20_{20}. The agreement between theory and experiment is very good or excellent depending on the compound, except at very low temperatures due to the presence of magnetic correlations (not accounted in the model)

    Disorder-induced double resonant Raman process in graphene

    Get PDF
    An analytical study is presented of the double resonant Raman scattering process in graphene, responsible for the D and D′^{\prime} features in the Raman spectra. This work yields analytical expressions for the D and D′^{\prime} integrated Raman intensities that explicitly show the dependencies on laser energy, defect concentration, and electronic lifetime. Good agreement is obtained between the analytical results and experimental measurements on samples with increasing defect concentrations and at various laser excitation energies. The use of Raman spectroscopy to identify the nature of defects is discussed. Comparison between the models for the edge-induced and the disorder-induced D band intensity suggests that edges or grain boundaries can be distinguished from disorder by the different dependence of their Raman intensity on laser excitation energy. Similarly, the type of disorder can potentially be identified not only by the intensity ratio ID/ID′I_{\mathrm{D}}/I_{\mathrm{D}^{\prime}}, but also by its laser energy dependence. Also discussed is a quantitative analysis of quantum interference effects of the graphene wavefunctions, which determine the most important phonon wavevectors and scattering processes responsible for the D and D′^{\prime} bands.Comment: 10 pages, 4 figure

    Normal state magnetotransport properties of β\beta-FeSe superconductors

    Full text link
    We present β\beta-FeSe magnetotransport data, and describe them theoretically. Using a simplified microscopic model with two correlated effective orbitals, we determined the normal state electrical conductivity and Hall coefficient, using Kubo formalism. With model parameters relevant for Fe-chalcogenides, we describe the observed effect of the structural transition on the ab-plane electrical resistivity, as well as on the magnetoresistance. Temperature-dependent Hall coefficient data were measured at 16 Tesla, and their theoretical description improves upon inclusion of moderate electron correlations. We confirm the effect of the structural transition on the electronic structure, finding deformation-induced band splittings comparable to those reported in angle-resolved photoemission.Comment: 6 pages, 5 figure

    C II abundances in early-type stars: solution to a notorious non-LTE problem

    Full text link
    We address a long-standing discrepancy between non-LTE analyses of the prominent C II 4267 and 6578/82 A multiplets in early-type stars. A comprehensive non-LTE model atom of C II is constructed based on critically selected atomic data. This model atom is used for an abundance study of six apparently slow-rotating main-sequence and giant early B-type stars. High-resolution and high-S/N spectra allow us to derive highly consistent abundances not only from the classical features but also from up to 18 further C II lines in the visual - including two so far unreported emission features equally well reproduced in non-LTE. These results require the stellar atmospheric parameters to be determined with care. A homogeneous (slightly) sub-solar present-day carbon abundance from young stars in the solar vicinity (in associations and in the field) of log C/H +12= 8.29+/-0.03 is indicated.Comment: 8 pages, 5 figure

    Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars

    Full text link
    It is generally accepted that the atmospheres of cool/lukewarm stars of spectral types A and later are described well by LTE model atmospheres, while the O-type stars require a detailed treatment of NLTE effects. Here model atmosphere structures, spectral energy distributions and synthetic spectra computed with ATLAS9/SYNTHE and TLUSTY/SYNSPEC, and results from a hybrid method combining LTE atmospheres and NLTE line-formation with DETAIL/SURFACE are compared. Their ability to reproduce observations for effective temperatures between 15000 and 35000 K are verified. Strengths and weaknesses of the different approaches are identified. Recommendations are made as to how to improve the models in order to derive unbiased stellar parameters and chemical abundances in future applications, with special emphasis on Gaia science.Comment: 12 pages, 8 figures; accepted for publication in Journal of Physics: Conference Series, GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Er

    The Impact of the Economic Downturn in the Spanish Civil Justice System

    Get PDF
    The Spanish justice system has been shaken by the econom- ic downturn as many other institutions have. This article addresses in the first place some statistical data that shed light as regards to the number of judges and the costs and length of the procedure in Spain. These figures help to understand, in the second place, the impact of austerity measures on the judiciary, namely, the freeze on the hiring of judges and the establishing of high court fees. While they mainly concern the supply side of justice services, others such cost reductions in legal aid have had, in the third place, an impact on the demand side, driving many citizens to social exclusion and to resorting to self-defence mecha-nisms. The final part of this article addresses some remedies that may alleviate judiciary’s workload, but that fall short of doing it. All in all, the Spanish justice system seems to require a holistic approach to patch up edges, but one in which the role of judge-made justice in a democratic society has to be central again

    Differential Effects of Increasing Salinity on Germination and Seedling Growth of Native and Exotic Invasive Cordgrasses

    Get PDF
    Soil salinity is a key environmental factor influencing germination and seedling establishment in salt marshes. Global warming and sea level rise are changing estuarine salinity, and may modify the colonization ability of halophytes. We evaluated the effects of increasing salinity on germination and seedling growth of native Spartina maritima and invasive S. densiflora from wetlands of the Odiel-Tinto Estuary. Responses were assessed following salinity exposure from fresh water to hypersaline conditions and germination recovery of non-germinated seeds when transferred to fresh water. The germination of both species was inhibited and delayed at high salinities, while pre-exposure to salinity accelerated the speed of germination in recovery assays compared to non-pre-exposed seeds. S. densiflora was more tolerant of salinity at germination than S. maritima. S. densiflora was able to germinate at hypersalinity and its germination percentage decreased at higher salinities compared to S. maritima. In contrast, S. maritima showed higher salinity tolerance in relation to seedling growth. Contrasting results were observed with differences in the tidal elevation of populations. Our results suggest S. maritima is a specialist species with respect to salinity, while S. densiflora is a generalist capable of germination of growth under suboptimal conditions. Invasive S. densiflora has greater capacity than native S. maritima to establish from seed with continued climate change and sea level rise.Ministerio de Educación, Cultura y Deporte (FPU14/06556

    Anomalous Proximity Effect in Underdoped YBaCuO Josephson Junctions

    Full text link
    Josephson junctions were photogenerated in underdoped thin films of the YBa2_2Cu3_3O6+x_{6+x} family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and show that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result constrains the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.Comment: 11 pages, 4 figure
    • …
    corecore