7,085 research outputs found
SL(2,R)-geometric phase space and (2+2)-dimensions
We propose an alternative geometric mathematical structure for arbitrary
phase space. The main guide in our approach is the hidden SL(2,R)-symmetry
which acts on the phase space changing coordinates by momenta and vice versa.
We show that the SL(2,R)-symmetry is implicit in any symplectic structure. We
also prove that in any sensible physical theory based on the SL(2,R)-symmetry
the signature of the flat target "spacetime" must be associated with either
one-time and one-space or at least two-time and two-space coordinates. We
discuss the consequences as well as possible applications of our approach on
different physical scenarios.Comment: 17 pages, no figure
Superintegrability of the Fock-Darwin system
The Fock-Darwin system is analysed from the point of view of its symmetry
properties in the quantum and classical frameworks. The quantum Fock-Darwin
system is known to have two sets of ladder operators, a fact which guarantees
its solvability. We show that for rational values of the quotient of two
relevant frequencies, this system is superintegrable, the quantum symmetries
being responsible for the degeneracy of the energy levels. These symmetries are
of higher order and close a polynomial algebra. In the classical case, the
ladder operators are replaced by ladder functions and the symmetries by
constants of motion. We also prove that the rational classical system is
superintegrable and its trajectories are closed. The constants of motion are
also generators of symmetry transformations in the phase space that have been
integrated for some special cases. These transformations connect different
trajectories with the same energy. The coherent states of the quantum
superintegrable system are found and they reproduce the closed trajectories of
the classical one.Comment: 21 pages,16 figure
Towards an Ashtekar formalism in eight dimensions
We investigate the possibility of extending the Ashtekar theory to eight
dimensions. Our approach relies on two notions: the octonionic structure and
the MacDowell-Mansouri formalism generalized to a spacetime of signature 1+7.
The key mathematical tool for our construction is the self-dual (antiself-dual)
four-rank fully antisymmetric octonionic tensor. Our results may be of
particular interest in connection with a possible formulation of M-theory via
matroid theory.Comment: 15 pages, Latex, minor changes, to appear in Class. Quantum Gra
Assessing the Formation Scenarios for the Double Nucleus of M31 Using Two-Dimensional Image Decomposition
The double nucleus geometry of M31 is currently best explained by the
eccentric disk hypothesis of Tremaine, but whether the eccentric disk resulted
from the tidal disruption of an inbounding star cluster by a nuclear black
hole, or by an m=1 perturbation of a native nuclear disk, remains debatable. I
perform detailed 2-D decomposition of the M31 double nucleus in the Hubble
Space Telescope V-band to study the bulge structure and to address competing
formation scenarios of the eccentric disk. I deblend the double nucleus (P1 and
P2) and the bulge simultaneously using five Sersic and one Nuker components. P1
and P2 appear to be embedded inside an intermediate component (r_e=3.2") that
is nearly spherical (q=0.97+/-m0.02), while the main galaxy bulge is more
elliptical (q=0.81+/-0.01). The spherical bulge mass of 2.8x10^7 M_sol is
comparable to the supermassive black hole mass (3x10^7 M_sol). In the 2-D
decomposition, the bulge is consistent with being centered near the UV peak of
P2, but the exact position is difficult to pinpoint because of dust in the
bulge. P1 and P2 are comparable in mass. Within a radius r=1\arcsec of P2, the
relative mass fraction of the nuclear components is M_BH:M_bulge:P1: P2 =
4.3:1.2:1:0.7, assuming the luminous components have a common mass-to-light
ratio of 5.7. The eccentric disk as a whole (P1+P2) is massive, M ~ 2.1x10^7
M_sol, comparable to the black hole and the local bulge mass. As such, the
eccentric disk could not have been formed entirely out of stars that were
stripped from an inbounding star cluster. Hence, the more favored scenario is
that of a disk formed in situ by an m=1 perturbation, caused possibly by the
passing of a giant molecular cloud, or the passing/accretion of a small
globular cluster.Comment: 19 pages, 8 figures. AJ accepted. For the version of this paper with
high resolution figures, go to:
http://zwicky.as.arizona.edu/~cyp/work/m31.ps.g
Influence of the Ground-State Topology on the Domain-Wall Energy in the Edwards-Anderson +/- J Spin Glass Model
We study the phase stability of the Edwards-Anderson spin-glass model by
analyzing the domain-wall energy. For the bimodal distribution of bonds, a
topological analysis of the ground state allows us to separate the system into
two regions: the backbone and its environment. We find that the distributions
of domain-wall energies are very different in these two regions for the three
dimensional (3D) case. Although the backbone turns out to have a very high
phase stability, the combined effect of these excitations and correlations
produces the low global stability displayed by the system as a whole. On the
other hand, in two dimensions (2D) we find that the surface of the excitations
avoids the backbone. Our results confirm that a narrow connection exists
between the phase stability of the system and the internal structure of the
ground-state. In addition, for both 3D and 2D we are able to obtain the fractal
dimension of the domain wall by direct means.Comment: 4 pages, 3 figures. Accepted for publication in Rapid Communications
of Phys. Rev.
Derivation of a multilayer approach to model suspended sediment transport: application to hyperpycnal and hypopycnal plumes
We propose a multi-layer approach to simulate hyperpycnal and hypopycnal
plumes in flows with free surface. The model allows to compute the vertical
profile of the horizontal and the vertical components of the velocity of the
fluid flow. The model can describe as well the vertical profile of the sediment
concentration and the velocity components of each one of the sediment species
that form the turbidity current. To do so, it takes into account the settling
velocity of the particles and their interaction with the fluid. This allows to
better describe the phenomena than a single layer approach. It is in better
agreement with the physics of the problem and gives promising results. The
numerical simulation is carried out by rewriting the multi-layer approach in a
compact formulation, which corresponds to a system with non-conservative
products, and using path-conservative numerical scheme. Numerical results are
presented in order to show the potential of the model
2D granular flows with the rheology and side walls friction: a well balanced multilayer discretization
We present here numerical modelling of granular flows with the
rheology in confined channels. The contribution is twofold: (i) a model to
approximate the Navier-Stokes equations with the rheology through an
asymptotic analysis. Under the hypothesis of a one-dimensional flow, this model
takes into account side walls friction; (ii) a multilayer discretization
following Fern\'andez-Nieto et al. (J. Fluid Mech., vol. 798, 2016, pp.
643-681). In this new numerical scheme, we propose an appropriate treatment of
the rheological terms through a hydrostatic reconstruction which allows this
scheme to be well-balanced and therefore to deal with dry areas. Based on
academic tests, we first evaluate the influence of the width of the channel on
the normal profiles of the downslope velocity thanks to the multilayer approach
that is intrinsically able to describe changes from Bagnold to S-shaped (and
vice versa) velocity profiles. We also check the well balance property of the
proposed numerical scheme. We show that approximating side walls friction using
single-layer models may lead to strong errors. Secondly, we compare the
numerical results with experimental data on granular collapses. We show that
the proposed scheme allows us to qualitatively reproduce the deposit in the
case of a rigid bed (i. e. dry area) and that the error made by replacing the
dry area by a small layer of material may be large if this layer is not thin
enough. The proposed model is also able to reproduce the time evolution of the
free surface and of the flow/no-flow interface. In addition, it reproduces the
effect of erosion for granular flows over initially static material lying on
the bed. This is possible when using a variable friction coefficient
but not with a constant friction coefficient
- …