55 research outputs found

    Structure and function of the GPN-loop GTPase Npa3 and implications for RNA polymerase II biogenesis

    Get PDF

    Determination of Creatinine in Human Urine with Flow Injection Tandem Mass Spectrometry

    Get PDF
    Background/Aims: Excretion of urinary compounds in spot urine is often estimated relative to creatinine. For the growing number of liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays of urine-excreted molecules, a fast and accurate method for determination of creatinine is needed. Methods: A high-throughput flow injection tandem mass spectrometry method for exact quantitation of creatinine in urine has been developed and validated. Sample preparation used only two-step dilution for protein precipitation and matrix dilution. Flow injection analysis without chromatographic separation allowed for total run times of 1 min per sample. Creatinine concentrations were quantitated using stable isotope dilution tandem mass spectrometry. Selectivity and coelution-free quantitation were assured by qualifier ion monitoring. Results: Method validation revealed excellent injection repeatability of 1.0% coefficient of variation (CV), intraday precision of 1.2% CV and interday precision of 2.4% CV. Accuracy determined from standard addition experiments was 106.1 +/- 3.8%. The linear calibration range was adapted to physiological creatinine concentrations. Comparison of quantitation results with a routinely used method (Jaffe colorimetric assay) proved high agreement (R-2 = 0.9102). Conclusions: The new method is a valuable addition to the toolbox of LC-MS/MS laboratories where excretion of urinary compounds is studied. The `dilute and shoot' approach to isotope dilution tandem mass spectrometry makes the new method highly accurate as well as cost-and time-efficient. Copyright (C) 2012 S. Karger AG, Base

    Structure and function of the initially transcribing RNA polymerase II–TFIIB complex

    Get PDF
    The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II– TFIIB complex1,2 indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions3,4 enigmatic. Here we report crystal structures of the Pol II–TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4A˚ resolution and of an initially transcribing complex that additionally contains theDNAtemplate and a 6-nucleotide RNAproduct.The structures reveal the entire B-reader and protein– nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emergingDNA–RNAhybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12–13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors5, and the bacterial initiation factor sigma has TFIIB-like topology1,2 and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function6–8. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template

    Situational awareness and safety

    Get PDF
    This paper considers the applicability of situation awareness concepts to safety in the control of complex systems. Much of the research to date has been conducted in aviation, which has obvious safety implications. It is argued that the concepts could be extended to other safety critical domains. The paper presents three theories of situational awareness: the three-level model, the interactive sub-systems approach, and the perceptual cycle. The difference between these theories is the extent to which they emphasise process or product as indicative of situational awareness. Some data from other studies are discussed to consider the negative effects of losing situational awareness, as this has serious safety implications. Finally, the application of situational awareness to system design, and training are presented

    Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    Get PDF
    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics

    Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a non-canonical CTD-interacting domain fold.

    No full text
    CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Ã… resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex. This article is protected by copyright. All rights reserved
    • …
    corecore