85 research outputs found

    Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury

    Get PDF
    In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable--keratinocyte-derived--cytokine and growth factor milieu. In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters. Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß. Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients

    A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia

    Get PDF
    Several CSF and blood biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), astrogliosis (glial fibrillary acidic protein (GFAP)), and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage FTD, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. 275 presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialised DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on prior diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF NfL, blood pNfH, blood GFAP, and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve (AUC) of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The AUC to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic FTD revealed that NPTX2 and NfL are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions

    Structured chronic primary care and health-related quality of life in chronic heart failure

    Get PDF
    Background: Structured care is proposed as a lever for improving care for patients with chronic conditions. The purpose of this study was to explore the associations of structured care characteristics, derived from the Chronic Care Model, with health-related quality of life (HRQOL) and optimal clinical management in chronic heart failure (CHF) patients in primary care, as well as the association between optimal management and HRQOL. Methods: Cross-sectional observational study using multi-level random-coefficient analyses of a representative sample of 357 patients diagnosed with CHF from 42 primary care practices in the Netherlands. We combined individual medical record data with patient and physician questionnaires. Results: There was large variation in the levels and presence of structured care elements. A 91% of physicians indicated that next appointments for CHF patients were made immediately after visits, while 11% indicated that reminders on CHF management were periodically received in their practice. Few associations were found between the organizational characteristics and optimal treatment or HRQOL. Optimal pharmacological treatment related to better quality of life (β = -11.5, P < .0001). Also, more lifestyle advice was given in practices with an appointment system allowing contact with more than one professional during the encounter (β = 1.0, P = .04). Conclusion: HRQOL and treatment quality in CHF patients were not consistently associated with characteristics of structured care in primary care practices

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    Gonadal Transcriptome Alterations in Response to Dietary Energy Intake: Sensing the Reproductive Environment

    Get PDF
    Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia

    Get PDF
    BACKGROUND: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities

    Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload

    Get PDF
    Chronic pressure-overload and diabetes mellitus are two frequent disorders affecting the heart. We aimed to characterize myocardial structural and functional changes induced by both conditions. Pressure-overload was established in Wistar-han male rats by supra-renal aortic banding. Six-weeks later, diabetes was induced by streptozotocin (65 mg/kg,ip), resulting in four groups: SHAM, banding (BA), diabetic (DM) and diabetic-banding (DB). Six-weeks later, pressure-volume loops were obtained and left ventricular samples were collected to evaluate alterations in insulin signalling pathways, extracellular matrix as well as myofilament function and phosphorylation. Pressure-overload increased cardiomyocyte diameter (BA 22.0 ± 0.4 μm, SHAM 18.2 ± 0.3 μm) and myofilament maximal force (BA 25.7 ± 3.6 kN/m(2), SHAM 18.6 ± 1.4 kN/m(2)), Ca(2+) sensitivity (BA 5.56 ± 0.02, SHAM 5.50 ± 0.02) as well as MyBP-C, Akt and Erk phosphorylation, while decreasing rate of force redevelopment (K (tr); BA 14.9 ± 1.1 s(-1), SHAM 25.2 ± 1.5 s(-1)). At the extracellular matrix level, fibrosis (BA 10.8 ± 0.9%, SHAM 5.3 ± 0.6%), pro-MMP-2 and MMP-9 activities increased and, in vivo, relaxation was impaired (τ; BA 14.0 ± 0.9 ms, SHAM 12.9 ± 0.4 ms). Diabetes increased cardiomyocyte diameter, fibrosis (DM 21.4 ± 0.4 μm, 13.9 ± 1.8%, DB 20.6 ± 0.4 μm, 13.8 ± 0.8%, respectively), myofilament Ca(2+)sensitivity (DM 5.57 ± 0.02, DB 5.57 ± 0.01), advanced glycation end-product deposition (DM 4.9 ± 0.6 score/mm(2), DB 5.1 ± 0.4 score/mm(2), SHAM 2.1 ± 0.3 score/mm(2)), and apoptosis, while decreasing K (tr) (DM 13.5 ± 1.9 s(-1), DB 15.2 ± 1.4 s(-1)), Akt phosphorylation and MMP-9/TIMP-1 and MMP-1/TIMP-1 ratios. Diabetic hearts were stiffer (higher end-diastolic-pressure: DM 7.0 ± 1.2 mmHg, DB 6.7 ± 0.7 mmHg, SHAM 5.3 ± 0.4 mmHg, steeper end-diastolic-pressure-volume relation: DM 0.59 ± 0.18, DB 0.83 ± 0.17, SHAM 0.41 ± 0.10), and hypo-contractile (decreased end-systolic-pressure-volume-relation). DB animals presented further pulmonary congestion (Lungs/body-weight: DB 5.23 ± 0.21 g/kg, SHAM 3.80 ± 0.14 g/kg) as this group combined overload-induced relaxation abnormalities and diabetes-induced stiffness. Diabetes mellitus and pressure overload led to distinct diastolic dysfunction phenotypes: while diabetes promoted myocardial stiffening, pressure overload impaired relaxation. The association of these damages accelerates the progression of diastolic heart failure progression in diabetic-banded animals
    corecore