109 research outputs found
Cell adhesion and mechanics as drivers of tissue organization and differentiation : local cues for large scale organization
Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance.Peer reviewe
Cadherin-mediated cell sorting not determined by binding or adhesion specificity
Cadherin adhesion molecules play important roles in the establishment of tissue boundaries. Cells expressing different cadherins sort out from each other in cell aggregation assays. To determine the contribution of cadherin binding and adhesion specificity to the sorting process, we examined the adhesion of cells to different purified cadherin proteins. Chinese hamster ovary cell lines expressing one of four different cadherins were allowed to bind to the purified cadherin extracellular domains of either human E-cadherin or Xenopus C-cadherin, and the specificity of adhesion was compared with cell-sorting assays. None of the different cadherin-expressing cells exhibited any adhesive specificity toward either of the two purified cadherin substrates, even though these cadherins differ considerably in their primary sequence. In addition, all cells exhibited similar strengthening of adhesion on both substrates. However, this lack of adhesive specificity did not determine whether different cadherin-expressing cells would sort from each other, and the tendency to sort was not predictable by the extent of sequence diversity in their extracellular domains. These results show that cadherins are far more promiscuous in their adhesive-binding capacity than had been expected and that the ability to sort out must be determined by mechanisms other than simple adhesive-binding specificity
Laminin 332 Is Indispensable for Homeostatic Epidermal Differentiation Programs
The skin epidermis is attached to the underlying dermis by a laminin 332 (Lm332)-rich basement membrane. Consequently, loss of Lm332 leads to the severe blistering disorder epidermolysis bullosa junctionalis in humans and animals. Owing to the indispensable role of Lm332 in keratinocyte adhesion in vivo, the severity of the disease has limited research into other functions of the protein. We have conditionally disrupted Lm332 expression in basal keratinocytes of adult mice. Although blisters develop along the interfollicular epidermis, hair follicle basal cells provide sufficient anchorage of the epidermis to the dermis, making inducible deletion of the Lama3 gene compatible with life. Loss of Lm332 promoted the thickening of the epidermis and exaggerated desquamation. Global RNA expression analysis revealed major changes in the expression of keratins, cornified envelope proteins, and cellular stress markers. These modifications of the keratinocyte genetic program are accompanied by changes in cell shape and disorganization of the actin cytoskeleton. These data indicate that loss of Lm332-mediated progenitor cell adhesion alters cell fate and disturbs epidermal homeostasis.Peer reviewe
Cadherin Engagement Regulates Rho family GTPases
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects
Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers
Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.</p
Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers
Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.</p
Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
Summary Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.Peer reviewe
- …