209 research outputs found
Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations
We investigate the minus-sign problem that afflicts quantum Monte Carlo (QMC)
simulations of frustrated quantum spin systems, focusing on spin S=1/2, two
spatial dimensions, and the extended Shastry-Sutherland model. We show that
formulating the Hamiltonian in the diagonal dimer basis leads to a sign problem
that becomes negligible at low temperatures for small and intermediate values
of the ratio of the inter- and intradimer couplings. This is a consequence of
the fact that the product state of dimer singlets is the exact ground state
both of the extended Shastry-Sutherland model and of a corresponding
"sign-problem-free" model, obtained by changing the signs of all positive
off-diagonal matrix elements in the dimer basis. By exploiting this insight, we
map the sign problem throughout the extended parameter space from the
Shastry-Sutherland to the fully frustrated bilayer model and compare it with
the phase diagram computed by tensor-network methods. We use QMC to compute
with high accuracy the temperature dependence of the magnetic specific heat and
susceptibility of the Shastry-Sutherland model for large systems up to a
coupling ratio of 0.526(1) and down to zero temperature. For larger coupling
ratios, our QMC results assist us in benchmarking the evolution of the
thermodynamic properties by systematic comparison with exact diagonalization
calculations and interpolated high-temperature series expansions.Comment: 13 pages including 10 figures; published version with minor changes
and correction
Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field
We report on magnetization, sound velocity, and magnetocaloric-effect
measurements of the Ising-like spin-1/2 antiferromagnetic chain system
BaCoVO as a function of temperature down to 1.3 K and applied
transverse magnetic field up to 60 T. While across the N\'{e}el temperature of
K anomalies in magnetization and sound velocity confirm the
antiferromagnetic ordering transition, at the lowest temperature the
field-dependent measurements reveal a sharp softening of sound velocity
and a clear minimum of temperature at T,
indicating the suppression of the antiferromagnetic order. At higher fields,
the curve shows a broad minimum at T, accompanied by a
broad minimum in the sound velocity and a saturation-like magnetization. These
features signal a quantum phase transition which is further characterized by
the divergent behavior of the Gr\"{u}neisen parameter . By contrast, around the critical field, the
Gr\"{u}neisen parameter converges as temperature decreases, pointing to a
quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea
Competition between intermediate plaquette phases in SrCu(BO) under pressure
Building on the growing evidence based on NMR, magnetization, neutron
scattering, ESR, and specific heat that, under pressure, SrCu(BO)
has an intermediate phase between the dimer and the N\'eel phase, we study the
competition between two candidate phases in the context of a minimal model that
includes two types of intra- and inter-dimer interactions without enlarging the
unit cell. We show that the empty plaquette phase of the Shastry-Sutherland
model is quickly replaced by a quasi-1D full plaquette phase when intra- and/or
inter-dimer couplings take different values, and that this full plaquette phase
is in much better agreement with available experimental data than the empty
plaquette one.Comment: 19 page
Convergence of the Magnus series
The Magnus series is an infinite series which arises in the study of linear
ordinary differential equations. If the series converges, then the matrix
exponential of the sum equals the fundamental solution of the differential
equation. The question considered in this paper is: When does the series
converge? The main result establishes a sufficient condition for convergence,
which improves on several earlier results.Comment: 11 pages; v2: added justification for conjecture, minor
clarifications and correction
Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption
In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements
Spectroscopic investigation of the deeply buried Cu In,Ga S,Se 2 Mo interface in thin film solar cells
The Cu In,Ga S,Se 2 Mo interface in thin film solar cells has been investigated by surface sensitive photoelectron spectroscopy, bulk sensitive X ray emission spectroscopy, and atomic force microscopy. It is possible to access this deeply buried interface by using a suitable lift off technique, which allows to investigate the back side of the absorber layer as well as the front side of the Mo back contact. We find a layer of Mo S,Se 2 on the surface of the Mo back contact and a copper poor stoichiometry at the back side of the Cu In,Ga S,Se 2 absorber. Furthermore, we observe that the Na content at the Cu In,Ga S,Se 2 Mo interface as well as at the inner grain boundaries in the back contact region is significantly lower than at the absorber front surfac
Identification of a novel zinc metalloprotease through a global analysis of clostridium difficile extracellular proteins
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis
Outcomes and Risk Score for Distal Pancreatectomy with Celiac Axis Resection (DP-CAR): An International Multicenter Analysis
Background: Distal pancreatectomy with celiac axis resection (DP-CAR) is a treatment option for selected patients with pancreatic cancer involving the celiac axis. A recent multicenter European study reported a 90-day mortality rate of 16%, highlighting the importance of patient selection. The authors constructed a risk score to predict 90-day mortality and assessed oncologic outcomes. Methods: This multicenter retrospective cohort study investigated patients undergoing DP-CAR at 20 European centers from 12 countries (model design 2000â2016) and three very-high-volume international centers in the United States and Japan (model validation 2004â2017). The area under receiver operator curve (AUC) and calibration plots were used for validation of the 90-day mortality risk model. Secondary outcomes included resection margin status, adjuvant therapy, and survival. Results: For 191 DP-CAR patients, the 90-day mortality rate was 5.5% (95 confidence interval [CI], 2.2â11%) at 5 high-volume (â„ 1 DP-CAR/year) and 18% (95 CI, 9â30%) at 18 low-volume DP-CAR centers (P = 0.015). A risk score with age, sex, body mass index (BMI), American Society of Anesthesiologists (ASA) score, multivisceral resection, open versus minimally invasive surgery, and low- versus high-volume center performed well in both the design and validation cohorts (AUC, 0.79 vs 0.74; P = 0.642). For 174 patients with pancreatic ductal adenocarcinoma, the R0 resection rate was 60%, neoadjuvant and adjuvant therapies were applied for respectively 69% and 67% of the patients, and the median overall survival period was 19 months (95 CI, 15â25 months). Conclusions: When performed for selected patients at high-volume centers, DP-CAR is associated with acceptable 90-day mortality and overall survival. The authors propose a 90-day mortality risk score to improve patient selection and outcomes, with DP-CAR volume as the dominant predictor
- âŠ